
1 INTRODUCTION 

The increase of oil demand and the consequent de-

pletion of shallow conventional hydrocarbon reser-

voirs has led to the exploration and drilling of deep 

oil wells (Kumar et al. 2013) (Mitchell et al. 2012). 

Such High Pressure and High Temperature (HPHT) 

environment enhances the casing degradation mech-

anisms (e.g, wear, corrosion, yield strength deration) 

that may result in accidents with severe conse-

quences (Kumar et al. 2013) (Baraldi et al. 2012a,b) 

(Abimbola et al. 2014). These consequences are to 

be avoided by design, ensuring casing integrity, dur-

ing both perforation and production (Mitchell et al. 

2012).  

Casing design consists in the iterative process of 

(Blade Energy Partners 2005): 

1) Identification of all possible load scenarios (e.g., 

kick, pressure tests, cementing, injection, 

changes in temperature, evacuation, buckling, 

etc.); 

2) Calculation of loads L (e.g., internal pressure, 

external pressure, axial force, torsion) at each 

depth of the casing string; 

3) Calculation of casing strength S under the cur-

rent design; 

4) Check that the strength is larger than loads: if 

not, modify the design and repeat step 3). 

Different approaches to verify the well structural 

integrity and the exploitation of the reservoir in a 

safely and cost-effective manner are available (Blade 

Energy Partners 2005):  

 Working Stress Design (WSD) 

 Limit States Design (LSD) 

 Resistance-Based Probabilistic Design (RBPD) 

 Reliability-Based Design (RBD) 

All these approaches aim at ensuring a reliable 

well design that minimizes the probability that the 

load exceeds the strength while minimizing the cost 

of the casing string. With respect to the abovemen-

tioned casing design iterative process, these ap-

proaches mainly differ in steps 2) 3) and 4), regard-

ing the assumptions taken to calculate the strength 

and the load (listed in Table 1).  

The safety of the design is done by checking if the 

design load L is lower or larger than the design 

strength S. In WSD and LSD approaches, this means 

verifying the condition of Eq. (1), where F  is a 

safety factor, whose value is given based on past ex-

perience (usually greater than one) to reduce S  to 
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account for the uncertainties that are not considered 

explicitly in these approaches (Prentice 1970). 

F

S
L   (1) 

Despite WSD is commonly used in the oil and gas 

industry because of its simplicity, it has many limi-

tations, such as the lack of risk quantification and the 

lack of consideration of any event-consequence rela-

tionship in the use of F  (i.e., all failure modes, as 

well as their consequences, are treated in the same 

manner), especially when the design is done for 

HPHT or deep-water oil wells where past experience 

is very limited. Another limit of WSD is the use of 

API burst strength (see Table 1) that leads to over-

conservative design and excessive cost (Adams et al. 

1998). 

LSD limits the excessive over-conservative design 

of WSD, using the casing rupture burst strength (see 

Table 1) even though also in this approach safety fac-

tors are used to assess the structural safety, because 

uncertainties in load and strength values are not con-

sidered. 

The RBD approach explicitly treats the uncertain-

ties by considering the probability distributions that 

affect the uncertain parameters x  of S and y  of L. 

When the parameters probability distributions af-

fecting the load cannot be assumed, due to lack of 

knowledge, it is prudent to resort to the RBPD ap-

proach that is a particular type of RBD (Adams et al. 

1998), where L  is deterministic (the same as in 

WSD and LSD), whereas S  is stochastic with its 

own distribution (see Table 1). In RBPD and RBD, 

a safety function is, therefore, used for the structural 

safety verification of step 4), defined as: 

),,(),,(),,,,( dyLdtxSdtyxM    (2) 

where ),,,,( dtyxM   is the (probabilistic) safety 

margin (Di Maio et al. 2016) at time t and depth d, 

equal to the difference between the safety variable 

(in this case ),,( dtxS ) limited from below by a 

lower threshold limit (in this case ),,( dyL  , where 

  is the time of the kick onset). Therefore, the prob-

ability of failure ),,( dtPf   of the casing at depth d  

and its reliability can be defined, respectively: 

)0),,,,((),,(  dtyxMPdtPf   (3) 

),,(1),,( dtPdtR f    (4) 

 

 

Table 1 Design approaches 

Method L  (kick load) S  (burst strength) 

WSD 

Deterministic value 
oi PPL   

(Blade Energy Partners 2005) 

where: 
iP  casing internal pressure at depth d  
oP  casing external pressure at depth d  

Deterministic value 


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
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y2
875.0  

(API Bulletin 5C3 1985) 

where: 

y  yield strength 

w  casing wall thickness 

OD  casing outside diameter 

LSD 

Deterministic value 
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2
875.0
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w
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
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(Wu et al. 2005) 

where: 

u  ultimate tensile strength 

w  casing nominal wall thickness 

RBPD Stochastic value 
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(Wu et al. 2005) 

where: 

],,[ ODwx u  

),( dtwr  casing remaining wall thickness 

RBD 

 

Stochastic value 

Field load data are used to estimate the prob-

ability distributions of the stochastic varia-

bles that affect the load (e.g., kick volume, 

kick intensity, etc.) (Adams et al. 1998) 



The primary objective of this work is to improve the 

RBPD approach for a realistic risk-based design of a 

casing string by accounting not only for the uncer-

tainties affecting S but also for the unlike occurrence 

of a kick load phenomenon, by calculating the evo-

lution of safety margins at different well depths, 

within a Risk-Informed Safety Margin Characteriza-

tion (RISMC) design framework (Di Maio et al. 

2016). In practice, we use the probabilistic safety 

margins to determine the probability of failure of a 

section of a given casing string design during the 

drilling phase, or, vice versa, the probabilistic safety 

margins might be used to retroact the design for sat-

isfying requested safety levels. 

In what follows, Section 2 presents the method for a 

probabilistic design based on Order Statistic (OS) 

(Nutt et al. 2004) (Martorell et al. 2006) (Martorell 

et al. 2009). Section 3 introduces the casing string 

layout and the risk assessment method. Section 4 

presents the results of the application of the approach 

and, then, in Section 5 conclusion are drawn. 

2 THE METHOD 

The estimation of the probability density function of 

),,,,( dtyxM   of Eq. (2) can be computationally 

very expensive, especially when the degradation 

mechanisms are to be modelled. In order to reduce 

the computational burden, we propose to compute 

only some percentiles of ),,,,( dtyxM  , with a lim-

ited and controlled number of simulations (Zio et al. 

2010) (Zio et al. 2008) (Di Maio et al. 2016). In this 

case, the confidence in the percentiles estimates be-

comes crucial for decision making and must, thus, be 

quantified. In practice, a small number N  of reali-

zations ),,( dtxS ii , Ni ,....,2,1 , is obtained by 

drawing N  times by Monte Carlo sampling methods 

(Zio 2013) the values of the parameters in x  from 

their respective probability distributions and, then, 

by running N  times the code that simulates the 

strength evolution in time at depth .d  These N  re-

alizations iS  can be used to estimate given percen-

tiles of the distributions of ),,,,( dtyxM   when the 

onset time   of a kick load is also sampled from its 

own distribution. 

To obtain the desired confidence in the safety 

margin percentile, the number N  has to be defined 

based on Order Statistics (OS) methodology (Nutt et 

al. 2004), which applies independently from the type 

of probability distribution. The OS allows N  to be 

kept low because only statistical intervals are esti-

mated and not the full probability distribution. 

Practically, the estimation of the percentiles of 

),,,,( dtyxM   proceeds as follows: at each time t , 

we collect N  values ),,,,( dtyxM ii   that belong to 

 ,),,,,(),...,,,,,(),,,,,( 2211 dtyxMdtyxMdtyxMM NNsort   

that is the ascending ordered set of values of 

),,,,( dtyxM ii   when the code has been run N  

times for N  different input vectors 

 NxxxX ,...,, 21  and one realization   of the kick 

load onset. It is worth mentioning that if the code 

were run a very large number of times ( N  ), 

it could be possible to give a sufficiently accurate es-

timate of the full distribution of ),,,,( dtyxM   and 

draw probabilistic conclusions on where it lies with 

respect to the threshold value 0M , that limits the 

integrity of the casing. Given the computational 

costs associated with the estimation of the evolution 

of the full distribution (drawn in continuous line in 

Figure 1), one is forced to focus on verifying that 

with some level of confidence  , a certain percent-

age   of the calculated values of ),,,,( dtyxM   falls 

within the safety envelope 0M  (i.e., the probabil-

istic safety margin of ),,,,( dtyxM   is limited from 

below). The approach proposed aims at showing that 

if the m - th  member ),,,,( dtyxM mm   of the N

sorted realizations sortM  is taken as the estimated 

- th  percentile ),,,,(ˆ dtyxM 
 , its probability of be-

ing less than the unknown true  - th  percentile 

),,,,( dtyxM   is equal to  , as shown in Fig. 1. 

 

 
 

Figure 1 Representation of the (unknown) safety margin prob-

ability distribution and its real and estimated γ-th percentile 

probability distribution, with confidence β 

 

In other words, being   and   defined as 

)),,,,(),,,,(( dtyxMdtyxMP    and 

)),,,,,(ˆ),,,,(( dtyxMdtyxMP     one has a 

level of confidence   that ),,,,( dtyxM   is greater 

https://it.wikipedia.org/wiki/Fricativa_bilabiale_sonora


than the estimated percentile ),,,,(ˆ dtyxM m 
: if 

0),,,,(ˆ dtyxM k 
, then 0),,,,( dtyxM  , 

too, as it is show in Fig. 1. 

Once   and   are fixed, the OS method for cal-

culating the (  | )-percentile estimate follows the 

lines of (Zio et al. 2010) and consists in (Nutt et al. 

2004): 

(i) Determining the sample size N  by fixing a 

positive integer m . The probability that at 

least m  observations of a random sample of 

size N  are lower than the  -percentile of the 

distribution generating the sample is  

 




 









mN

k

kkN

k

N

0

)1(   (12) 

To find the sample size ,N  Eq. (12) has to be 

solved in terms of .N  

(ii) Sorting the observations in the sample by in-

creasing value, the element in the thm  

place being the statistic of order m . 

(iii)  Estimating the  -percentile by setting 

),,,,(ˆ dtyxM 
 equal to the statistic of order 

m , i.e. the m - th  smallest observation in the 

sample; then 

)).,,,,(ˆ),,,,(( dtyxMdtyxMP     

Note that higher values of m  in step (i) imply 

higher values of the sample size N  but gen-

erate less conservative estimates of the  - th

percentile; in any case, the sample size ,N  

i.e. the number of probabilistic safety margin 

evolution code runs, can be kept low because 

only intervals related to the  - th  percentile 

are estimated and not the full probability dis-

tribution generating the data. 

In Fig. 2, the flowchart of the procedure to evalu-

ate the probability of casing failure ),,( dtPf   at 

depth d  at time t , given the kick onset time  is 

sketched. 

3 CASE STUDY  

The objective is to evaluate the probability of failure 

of a casing string that degrades due to wear and a 

kick shock. The string under test is the 9-5/8 [in], L 

80, 47 [lb/ft] casing string shown in Figure 3, to-

gether with its apparent dogleg severity DL , that 

will become useful in what follows. We will con-

sider four casing sections at depths: 10001 d [ft], 

20002 d [ft], 70003 d  [ft], 100004 d [ft]. 

The strength of the casing is realistically assumed 

to reduce due to casing wear (Schoenmakers 1987) 

(Bradley et al. 1975) (White et al. 1987). This occurs 

when the drill string tension forces the rotating tool 

joint against the inner wall of the casing on the con-

cave side of a curve portion of a well path (Hall et al. 

1994). The rotating tool joint wears away a crescent 

volume of the casing, as shown in Figure 4 (Hall et 

al. 1994). This degradation mechanism results in the 

unpleasant reduction of the casing remaining wall 

thickness ),( dtwr
 and, thus, in the reduction of 

casing strength ),,( dtxS . 

Several models have been proposed to estimate 

casing wear, like the wear-efficiency model (White 

et al. 1987) (Hall et al. 1994), and the nonlinear cas-

ing wear model (Sun et al. 2012). In this application, 

we utilize this latter model because it has been shown 

to better describe the phenomenon better than the 

former one (Sun et al. 2012). Accordingly to the non-

linear wear model, the volume V  of casing removed 

(per foot of well depth) [in3/ft] by the tool joint is 

(Deli et al. 2010):  

SD
dt

f
dtV w  

 ),(
),(  (5) 

where Wf  is a wear condition coefficient [in/psi], 

),( dt  is half of the contact width [in],  is the lat-

eral load (per foot of well depth) [lbf/ft] equal (Hall 

et al. 1994):  











2
sin2

DL
T DL  (6) 

where T  is the string tension [lbf/ft], DL  is the ap-

parent dogleg severity [radians/ft] that is computed 

from well directional survey data, that are taken be-

fore or just after setting intermediate casing, 
DL is a 

factor that accounts for underestimation of DL , SD  

is the sliding distance that the tool joint runs against 

the casing inner wall, that is given by: 

dp

tj

RPMtj
L

L
tNDSD  60  (7) 

where 
tjD is the outside diameter of a tool joint [in], 

RPMN  is the rotary speed of the tool joint [RPM], t  

is the drilling time [hours], 
tjL  is the length of a tool 

joint and 
dpL  is the length of one joint of drill pipe. 

This makes V  increasing during drilling time t  (see 

Eq. (5) above), and depending on d  since T  and DL  

depend on d  (see Eq. (6) above). Thus, at any t  and 

,d  we can quantify the depth of wear groove ),( dth  

using the geometric relationships for a crescent-

shape wear groove and ),( dtwr
 (Kumar et al. 2013).  

 



 
 

Figure 2 Flowchart of the OS-based RBPD approach 

The quantification of ),( dtwr
 is challenged by 

the uncertainty that affects some of the parameters 

involved in the wear model, whose distributions are 

listed in Table 2. In particular, the largest uncertainty 

affects DL  and this challenges the prediction of the 

casing wear degradation progression. Indeed, DL  is 

computed from usually inaccurate well survey data 

influenced by the survey accuracy and survey station 

spacing, resulting in an underestimation of the actual 

dogleg severity. To take into account this underesti-

mation, it is recommended to use a multiplication 

factor 
DL  that increases   (see Eq. (5) above (Hall 

et al. 1994)). As the RBPD approach entails, we con-

sider the variables uncertainties affecting S , listed 

in Table 2, as well as its reduction due to the casing 

wear, and calculate at each time t  the evolution of 

the safety margin ),,,,( dtyxM  . 

Regarding the load ,L  we assume a kick load to oc-

cur at a random time   within the drilling time drillT

. The blowout is an uncontrolled flow of hydrocar-

bons (e.g., gas and condensate) or even saltwater 

from a well to the surrounding environment (Kha-

kzad et al. 2013). A kick can result in a blowout if it 

is not detected in a timely manner and properly pre-

vented by design. 

 

 

 
Figure 3 Wellbore schematic with its dogleg severity (adapted 

from (Blade Energy Partners 2005)) 

 

Figure 4 Worn casing geometry (adapted from (Deli et al. 

2010)) 



Table 2 List of the stochastic variables considered in 

the wear model and their uncertainty distributions 

 Parameter Distribution 

S  

OD  N (9.635;0.003)  

w  N (0.479;0.003)  

u  N (95000;2800)  

Casing 

Wear Model 

DL  U (1;4)  

tjR  N (3.25;0.0015)  

4 RESULTS 

The proposed OS-based RBPD approach of Section 

2 has been applied to evaluate the probability of cas-

ing failure ),,( dtPf   considering the kick as an in-

itiating event, the successful kick detection and the 

success of at least one of the barriers (rams or pre-

venter), while the thickness of the casing is reduced 

due to wear. Moreover, we have compared the re-

sults obtained using Eq. (3) with those provided by 

WSD and LSD approaches by assessing the casing 

failure as in Eq. (1). The results of the application of 

the WSD, LSD and RBPD approaches are presented. 

For WSD and LSD approaches, we check whether 

the condition of Eq. (1) is verified at the four casing 

section depths considered. Instead, according to 

RBPD method we verify if ),,,,( dtyxM   falls in 

the safety envelope ( 0M , see Section 2). Table 3 

resumes the load and strength values used for the cal-

culation of the safety margins under the assumptions 

of the three methods. 

Table 4 shows the safety margin results under the 

different assumptions of WSD and LSD at the four 

different well depths, and for a generic realization of 

the RBPD with one random realization of the kick 

time ,  sampled from a uniform distribution in the 

range between the time in which the drilling starts 

0t  and the time in which it finishes drillTt  . At 

first, we point out that the only approach that consid-

ers the time dependency of the strength and the time 

of occurrence of the kick load is the RBPD approach. 

The WSD and LSD approaches, instead, provide 

only a constant estimation of the safety margins. 

Also, we can notice that sections 
1d  and 

2d  would 

fail )0( M  according to the WSD approach; con-

versely, according to the LSD approach, all four cas-

ing sections 
1d , 

2d , 3d  and 
4d  are safe. The differ-

ence in the results of WSD approach and LSD 

approach, is due to a strong limit of WSD, that is the 

use of API burst strength (API Bulletin 5C3 1985) 

that leads to over-conservative design and excessive 

cost (Adams et al. 1998); LSD, instead, limits the ex-

cessive over-conservative design of WSD, using the 

casing rupture burst strength of (Wu et al. 2005). Fi-

nally, according to the RBPD approach, the margin 

),,,,( dtyxM   falls in the safety envelope (

0),,,,( dtyxM  ) for all four casing sections, and, 

thus, according to the RBPD methodology, all the 

four casing sections are safe. These insights are also 

resumed in Table 4. 

 

Table 3 List of the load and strength values for 

safety margin calculation 

 ),0,( dxS  L  

at
1d   

L  

at
2d  

L  

at 3d  

L  

at
4d  

F  

WSD 
6865  

][ psi  

7580
][ psi  

7160
][ psi  

4744
][ psi  

 

 

 

3349
][ psi  

1.1  

LSD 
8573  

][ psi  

RBPD 

Depends on 

the sampled 

values of 

x  

 

 

 

Table 4 Casing design results of the simulations of 

Fig. 8 

Casing 

Section 
WSD LSD RBPD 

1d  1),( 1 dtPf  Safe Safe 

2d  1),( 1 dtPf  Safe Safe 

3d  Safe Safe Safe 

4d  Safe Safe Safe 

 

In what follows, we focus our attention on the sec-
tion at 1d  being the most critical casing section since 
it is subjected to the highest load and the most severe 
wear. 

By sampling N  times the input vector ,x  for a 

given kick time ,  we aim at evaluating a  - th  per-

centile with a confidence   of the distribution of 

),,,,( 1dtyxM  . We evaluate the number N  for es-

timating the 5 - th  percentile of the distribution of 

),,,,( 1dtyxM  , with 95.0 , which is 59N  

(Nutt et al. 2004). Fig. 5 shows the 59  evolutions of 

the safety margins when the kick load time is 58  

[hours]. One might misleadingly conclude that, since 



the probability of failure 0),58,( 1  dtPf  , the 

design of the casing string is safe at any time of oc-

currence of the kick load. Indeed, the wear evolution 

strongly impacts the safety margin evolution in time, 

as it can be seen in Fig. 6, where 148N  and   is 

sampled one hundred times. 
It can be seen, that the probability of casing fail-

ure is not equal to zero, but rather, a given percentile 
of the distribution of ),123,,,( 1dtyxM   becomes 
negative at 123t  [hours]. To calculate the percen-
tile at which, at any time, ),,,,( 1dtyxM   falls out 
the safety envelope, we could run the model 

N  times. This is obviously infeasible and to 
avoid this, we provide by the OS theory the estimate 
of the percentile   for which 

0),123,,,( 1  dtyxM   with a confidence 
95.0 . This, for example, is equal to 032.0  

for 123t  [hours] (because 2m  simulations pro-
vide negative safety margin results, shown with dots 
in the zoom of Fig. 6). Therefore, since the 3.2- th  
percentile of the safety margin probability distribu-
tion evolution ),123,,,( 1dtyxM   becomes lower 
than 0  at time 123t  [hours] for the casing section 

10001 d  [ft], we can estimate with a confidence 
95.0  that the probability of casing failure at 

depth 
1d  is 032.0),123,123( 1  dtPf  , in this 

scenario when a kick load occurs, the kick detection 
system correctly detects the anomaly and at least one 
of the barriers succeed in controlling the blowout 

Similarly, we can estimate ),,( 1dtPf   at each 

time 123t  [hours] and use this time-dependent 

probability to calculate the blowout probability of 

the casing section at depth 
1d  (plotted in Fig. 7). It is 

worth mentioning that the computation of the overall 

blowout probability requires modelling the casing 

string as a series of casing sections that may inde-

pendently fail. In other words, assuming to subdivide 

the casing string into   sections,  ,....3,2,1 , 

each one characterized by a given ),,(  dtPf , the 

overall casing string failure probability is equal to:  







1

, )),,(1(1),(


 dtPtP foverallf  (8) 

5 CONCLUSION 

Deep-water wells for oil and gas extraction make 

structural components, such as casing and tubing, 

work in extremely harsh environmental conditions 

that accelerate component degradation and increase 

failure probability. In this work, we propose to 

properly design casing strings under these operative 

circumstances with a Resistance-Based Probabilistic 

Design (RBPD) approach that is informed with the 

quantification of the probabilistic safety margin that 

the design load does not exceed the casing strength. 

Wear is taken and modelled as the main degradation 

mechanism during drilling and the accidental event 

of a kick load is considered to affect the performance 

of the casing string.  

On a real case study, we have shown that the 

WSD approach is more conservative than the LSD 

approach, resulting in different design conclusions. 

However, this latter approach still lacks of a proper 

treatment of the uncertainties affecting the reliability 

of the casing sections. To inform this with the proper 

confidence, we have evaluated the probabilistic 

safety margins of the casing sections during drilling 

with the OS-based RBPD approach here proposed. 

Results can be useful to control the process during 

drilling or to retroact on the design in order to 

achieve the acceptable level of casing probability of 

failure. 

 
Figure 5 Safety margin of first casing section considering 59 

simulations and one kick time 

 
Figure 7 Blowout probability of the casing at depth d1 



 

Figure 6 Safety margin of the first casing section at depth d1 considering 148 simulations and 100 kick time 
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