8 research outputs found

    Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma

    No full text
    A series of monothiocarbamates (MTCs) were prepared from primary/secondary amines and COS as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, using the dithiocarbamates, the xanthates, and the trithiocarbonates as lead compounds. The MTCs effectively inhibited the pharmacologically relevant human (h) hCAs isoforms I, II, IX, and XII in vitro and showed KIs spanning between the low and medium nanomolar range. By means of a computational study, the MTC moiety binding mode on the CAs was explained. Furthermore, a selection of MTCs were evaluated in a normotensive glaucoma rabbit model for their intraocular pressure (IOP) lowering effects and showed interesting activity

    Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands

    No full text
    The αvβ6 integrin binds the RGD-containing peptide of the foot and mouth disease virus with high selectivity. In this study, the long binding helix of this ligand was downsized to an enzymatically stable cyclic peptide endowed with sub-nanomolar binding affinity toward the αvβ6 receptor and remarkable selectivity against other integrins. Computational studies were performed to disclose the molecular bases underlying the high binding affinity and receptor subtype selectivity of this peptide. Finally, the utility of the ligand for use in biomedical studies was also demonstrated here. The search for binding: The αvβ6 integrin binds the RGD-containing peptide of the foot and mouth disease virus with high selectivity. The long binding helix of this ligand was downsized to an enzymatically stable cyclic peptide endowed with sub-nanomolar binding affinity toward the αvβ6 receptor and remarkable selectivity against other integrins

    Identification of highly conserved residues involved in inhibition of HIV-1 RNase H function by diketo acid derivatives

    Get PDF
    HIV-1 reverse transcriptase (RT)-associated RNase H activity is an essential function in viral genome retrotranscription. RNase H is a promising drug target for which no inhibitor is available for therapy. Diketo acid (DKA) derivatives are active site Mg2+- binding inhibitors of both HIV-1 RNase H and integrase (IN) activities. To investigate the DKA binding site of RNase H and the mechanism of action, six couples of ester and acid DKAs, derived from 6-[1-(4-fluorophenyl)methyl-1H-pyrrol-2-yl)]-2, 4-dioxo- 5-hexenoic acid ethyl ester (RDS1643), were synthesized and tested on both RNase H and IN functions. Most of the ester derivatives showed selectivity for HIV-1 RNase H versus IN, while acids inhibited both functions. Molecular modeling and site-directed mutagenesis studies on the RNase H domain demonstrated different binding poses for ester and acid DKAs and proved that DKAs interact with residues (R448, N474, Q475, Y501, and R557) involved not in the catalytic motif but in highly conserved portions of the RNase H primer grip motif. The ester derivative RDS1759 selectively inhibited RNase H activity and viral replication in the low micromolar range, making contacts with residues Q475, N474, and Y501. Quantitative PCR studies and fluorescence- activated cell sorting (FACS) analyses showed that RDS1759 selectively inhibited reverse transcription in cell-based assays. Overall, we provide the first demonstration that RNase H inhibition by DKAs is due not only to their chelating properties but also to specific interactions with highly conserved amino acid residues in the RNase H domain, leading to effective targeting of HIV retrotranscription in cells and hence offering important insights for the rational design of RNase H inhibitors. Copyrigh

    Discovery of N-aryl-naphthylamines as in vitro inhibitors of the interaction between HIV integrase and the cofactor LEDGF/p75

    No full text
    Abstract A series of N-aryl-naphthylamines, exemplified by the structures 11-16, were chosen for an in-house library screening to assay their ability to disrupt the interaction between the LEDGF cofactor and the HIV integrase. Structure modification led also to design and synthesize new compounds 17a-f. Compounds 11e,h,k,n, 13b, and 14 showed good activity in AlphaScreen assay. The most active compound 11e (IC50 Combining double low line 2.5 ÎĽM) was selected for molecular modeling studies and showed a binding mode similar to the one of the known LEDGIN 8

    Phenylpyrazolo[1,5-a]quinazolin-5(4H)-one: a suitable scaffold for the development of noncamptothecin Topoisomerase I (top1) inhibitors

    No full text
    In search for a novel chemotype to develop topoisomerase I (Top1) inhibitors, the pyrazolo[1,5-a]quinazoline nucleus, structurally related to the indenoisoquinoline system precursor of well-known Top1 poisons, was variously decorated (i.e., a substituted phenyl ring at 2- or 3-position, a protonable side chain at 4- or 5-position), affording a number of Top1 inhibitors with cleavage patterns common to CPT and MJ-III-65. SARs data were rationalized by means of an advanced docking protocol. © 2013 American Chemical Society

    Exploring the chemical space of G-quadruplex binders: discovery of a novel chemotype targeting the human telomeric sequence

    No full text
    Recent findings have unambiguously demonstrated that DNA G-rich sequences can adopt a G-quadruplex folding in living cells, thus further validating them as crucial targets for anticancer therapy. Herein, to identify new potent G4 binders as antitumor drug candidates, we have targeted a 24-nt G4-forming telomeric sequence employing a receptor-based virtual screening approach. Among the best candidates, in vitro binding experiments allowed identification of three novel G4 ligands. Among them, the best compound features an unprecedented binding selectivity for the human telomeric DNA G-quadruplex with no detectable binding for other G4-forming sequences present at different genomic sites. This behavior correlates with the detected ability to generate DNA damage response in tumor cells at the telomeric level and efficient antiproliferative effect on different tumor cell lines at low micromolar concentrations

    Exploring the N-Terminal Region of C-X-C Motif Chemokine 12 (CXCL12): Identification of Plasma-Stable Cyclic Peptides As Novel, Potent C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonists

    No full text
    We previously reported the discovery of a CXCL12-mimetic cyclic peptide (2) as a selective CXCR4 antagonist showing promising in vitro and in vivo anticancer activity. However, further development of this peptide was hampered by its degradation in biological fluids as well as by its low micromolar affinity for the receptor. Herein, extensive chemical modifications led to the development of a new analogue (10) with enhanced potency, specificity, and plasma stability. A combined approach of Ala-amino acid scan, NMR, and molecular modeling unraveled the reasons behind the improved binding properties of 10 vs 2. Biological investigations on leukemia (CEM) and colon (HT29 and HCT116) cancer cell lines showed that 10 is able to impair CXCL12-mediated cell migration, ERK-phosphorylation, and CXCR4 internalization. These outcomes might pave the way for the future preclinical development of 10 in CXCR4 overexpressing leukemia and colon cancer

    N-Substituted Quinolinonyl Diketo Acid Derivatives as HIV Integrase Strand Transfer Inhibitors and Their Activity against RNase H Function of Reverse Transcriptase

    No full text
    Bifunctional quinolinonyl DKA derivatives were first described as nonselective inhibitors of 3′-processing (3′-P) and strand transfer (ST) functions of HIV-1 integrase (IN), while 7-aminosubstituted quinolinonyl derivatives were proven IN strand transfer inhibitors (INSTIs) that also displayed activity against ribonuclease H (RNase H). In this study, we describe the design, synthesis, and biological evaluation of new quinolinonyl diketo acid (DKA) derivatives characterized by variously substituted alkylating groups on the nitrogen atom of the quinolinone ring. Removal of the second DKA branch of bifunctional DKAs, and the amino group in position 7 of quinolinone ring combined with a fine-tuning of the substituents on the benzyl group in position 1 of the quinolinone, increased selectivity for IN ST activity. In vitro, the most potent compound was 11j (IC50 = 10 nM), while the most active compounds against HIV infected cells were ester derivatives 10j and 10l. In general, the activity against RNase H was negligible, with only a few compounds active at concentrations higher than 10 μM. The binding mode of the most potent IN inhibitor 11j within the IN catalytic core domain (CCD) is described as well as its binding mode within the RNase H catalytic site to rationalize its selectivity. (Chemical Presented)
    corecore