78 research outputs found

    Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population

    Get PDF
    UMR AGAP - équipe AFEF - Architecture et fonctionnement des espèces fruitièresIn temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6–21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase

    High feasibility and antileukemic efficacy of fludarabine, cytarabine, and idarubicin (FLAI) induction followed by risk-oriented consolidation: A critical review of a 10-year, single-center experience in younger, non M3 AML patients

    Get PDF
    About 105 consecutive acute myeloid leukemia (AML) patients treated with the same induction-consolidation program between 2004 and 2013 were retrospectively analyzed. Median age was 47 years. The first induction course included fludarabine (Flu) and high-dose cytarabine (Ara-C) plus idarubicin (Ida), with or without gemtuzumab-ozogamicin (GO) 3 mg/m2 (FLAI-5). Patients achieving complete remission (CR) received a second course without fludarabine but with higher dose of idarubicin. Patients not achieving CR received an intensified second course. Patients not scheduled for early allogeneic bone marrow transplantation (HSCT) where planned to receive at least two courses of consolidation therapy with Ara-C. Our double induction strategy significantly differs from described fludarabine-containing regimens, as patients achieving CR receive a second course without fludarabine, to avoid excess toxicity, and Ara-C consolidation is administrated at the reduced cumulative dose of 8 g/m2 per cycle. Toxicity is a major concern in fludarabine containing induction, including the recent Medical Research Council AML15 fludarabine, cytarabine, idaraubicin and G-CSF (FLAG-Ida) arm, and, despite higher anti-leukemic efficacy, only a minority of patients is able to complete the full planned program. In this article, we show that our therapeutic program is generally well tolerated, as most patients were able to receive subsequent therapy at full dose and in a timely manner, with a 30-day mortality of 4.8%. The omission of fludarabine in the second course did not reduce efficacy, as a CR rate of 83% was achieved and 3-year disease-free survival and overall survival (OS) were 49.6% and 50.9%, respectively. Our experience shows that FLAI-5/Ara-C + Ida double induction followed by risk-oriented consolidation therapy can result in good overall outcome with acceptable toxicity. Am. J. Hematol. 91:755\u2013762, 2016. \ua9 2016 Wiley Periodicals, Inc

    miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators

    Get PDF
    BACKGROUND: Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance.METHODS: The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy.RESULTS: miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor.CONCLUSIONS: Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract

    Investigating the fruit texture genetic control in apple and its interplay with the production of volatile compounds using multi-family based analysis and genome wide association mapping

    No full text
    Although varying with context, quality of fresh fruits includes several properties such as color, texture, flavor and health promoting compounds. This thesis focused on two important quality aspects, namely texture and aroma in apple, and defining the genomic regions involved in the control of these two features. The genetic control of texture and VOCs production have been investigated using two marker-trait association analysis approaches: Pedigree Based Analysis (PBA) and Genome Wide Association Study (GWAS). In chapter 2, ASSIsT (Automatic SNP ScorIng Tool), a software dedicated for the efficient calling and filtering of SNPs from Illumina InfiniumÒ arrays is presented. ASSIsT builds on GenomeStudio® derived data and identifies markers showing reliable genotype calls (bi-allelic segregation pattern). In addition, ASSIsT identifies and re-edits SNP calls of markers showing additional alleles (null alleles or additional SNPs in the probe annealing site). Chapter 3 aimed to dissect the genetic control of fruit firmness in apple during storage through PBA and employing 24 bi-parental families (1216 individuals) connected by a common pedigree structure. Ten QTLs were identified encompassing eight linkage groups, which unravelled a QTL dynamics over storage shedding light on the specific genetic control at each time-point. Chapter 4: aimed to comprehensively decipher the genetic control of fruit texture. Two complementing QTL mapping approaches were employed together with a novel and high sophisticated phenotyping device for fruit texture. The PBA was carried out on six full-sib pedigreed families (416 individuals), while the GWAS was performed on a collection of 233 apple accessions. The texture analyser employed (TAXT-AED texture analyser) allowed the measurement of both the mechanical properties (firmness) and the acoustic properties (crispness) of fruit texture. The QTL results indicated chromosome 10 being associated in changes of the mechanical properties of fruit texture, while chromosomes 2 and 14 were more associated to the acoustic response. In Chapter 5 the interplay between texture and volatile organic compounds (VOCs) was investigated in 162 apple accessions. The array of volatile compounds phenotyped was implemented into a GWAS identifying seven chromosomes harbouring important candidate genes for aroma, such as MdAAT1 and MdIGS. Next, volatilome and fruit texture data were integrated revealing a negative correlation between these two features.</p

    Optimizing predictions for applying genomic selection to texture in Apple

    No full text
    International audienceAlthough genomic selection promised to increase drastically breeding efficiency in perennial crops, it is not yet broadly applied in fruit trees. Among the several targets in apple breeding, fruit texture is an essential feature affecting both consumers’ appreciation and storage performance. Due to the fixation of alleles at the major genes underlying texture in modern breeding programs, the available genetic variability for this trait might rely on minor effect alleles, which can be targeted with genomic selection. In this study, we aimed to assess the feasibility of genomic selection for texture in a population of 537 individuals consisting in a collection of 259 individuals and 6 full-sib biparental families, all genotyped with 8,294 SNPs. We dissected the fruit texture complexity by measuring twelve acoustic and mechanical subtraits with a TA.XTplus texture analyzer. We applied different scenarios for the design of the training population with and without taking into account genetic parameters. The use of the entire collection to predict families was not the most efficient strategy, since families were best predicted using training populations composed of the 10 to 202 most related individuals. Training population optimization allowed increasing prediction accuracies by 0.17 on average, reaching a maximum accuracy of 0.78 for predicting the number of force peaks in the family ‘Gala x Pink Lady’. As the two first principal components of texture traits summarized firmness (PC1) and crispiness (PC2), we predicted these two synthetic traits and obtained maximum accuracies of 0.81 and 0.40, respectively. Furthermore, our results indicate that although genetic clustering may be correlated to texture profiles, genetic relatedness might already capture the clustering effect in predictions. Our work sheds light on the high potential for predicting texture in apple. The methods presented here also provide insights for efficiently designing genomic selection trials in fruit trees

    Sweet Orange: Evolution, Characterization, Varieties, and Breeding Perspectives

    No full text
    Among Citrus species, the sweet orange (Citrus sinensis (L.) Osbeck) is the most important in terms of production volumes and cultivated areas. Oranges are particularly appreciated for the organoleptic characteristics and the high nutraceutical value of the fruits (thanks especially to their high content of antioxidants). Recent advances in citrus genetic and genomic resources, such as the release of the reference genomes of several sweet orange cultivars, have contributed to (i) understanding the diversification of C. sinensis and its relation with other citrus species, (ii) assessing the molecular mechanisms underlying traits of interest, (iii) identifying and characterizing the candidate genes responsible for important phenotypic traits, and (iv) developing biotechnological methods to incorporate these traits into different citrus genotypes. It has been clarified that all the genetic diversity within the sweet orange species was derived from subsequent mutations starting from a single ancestor and was derived from complex cycles of hybridization and backcrossing between the mandarin (Citrus reticulata Blanco) and the pummelo (Citrus maxima (Burm.) Merr.). This paper provides an overview of the varietal panorama together with a description of the main driving forces in present and future sweet orange breeding. In fact, for the sweet orange, as well as for other citrus species, the release of novel varieties with improved characteristics is being pursued thanks to the employment of conventional and/or innovative (molecular-based) methods. The state of the art methods together with the innovations in genomics and biotechnological tools leading to the so-called new plant breeding technologies were also reviewed and discussed

    Sweet Orange: Evolution, Characterization, Varieties, and Breeding Perspectives

    No full text
    Among Citrus species, the sweet orange (Citrus sinensis (L.) Osbeck) is the most important in terms of production volumes and cultivated areas. Oranges are particularly appreciated for the organoleptic characteristics and the high nutraceutical value of the fruits (thanks especially to their high content of antioxidants). Recent advances in citrus genetic and genomic resources, such as the release of the reference genomes of several sweet orange cultivars, have contributed to (i) understanding the diversification of C. sinensis and its relation with other citrus species, (ii) assessing the molecular mechanisms underlying traits of interest, (iii) identifying and characterizing the candidate genes responsible for important phenotypic traits, and (iv) developing biotechnological methods to incorporate these traits into different citrus genotypes. It has been clarified that all the genetic diversity within the sweet orange species was derived from subsequent mutations starting from a single ancestor and was derived from complex cycles of hybridization and backcrossing between the mandarin (Citrus reticulata Blanco) and the pummelo (Citrus maxima (Burm.) Merr.). This paper provides an overview of the varietal panorama together with a description of the main driving forces in present and future sweet orange breeding. In fact, for the sweet orange, as well as for other citrus species, the release of novel varieties with improved characteristics is being pursued thanks to the employment of conventional and/or innovative (molecular-based) methods. The state of the art methods together with the innovations in genomics and biotechnological tools leading to the so-called new plant breeding technologies were also reviewed and discussed

    The origin and the genetic regulation of the self-compatibility mechanism in clementine (Citrus clementina Hort. ex Tan.)

    Get PDF
    Self-incompatibility (SI) is a genetic mechanism common in flowering plants to prevent self-fertilization. Among citrus species, several pummelo, mandarin, and mandarin-like accessions show SI behavior. In these species, SI is coupled with a variable degree of parthenocarpy ensuring the production of seedless fruits, a trait that is highly appreciated by consumers. In Citrus, recent evidences have shown the presence of a gametophytic SI system based on S-ribonucleases (S-RNases) ability to impair self-pollen tube growth in the upper/middle part of the style. In the present study, we combined PCR analysis and next-generation sequencing technologies, to define the presence of S7- and S11-Rnases in the S-genotype of the Citrus clementina (Hort. ex Tan.), the self-incompatible ‘Comune’ clementine and its self-compatible natural mutant ‘Monreal’. The reference genome of ‘Monreal’ clementine is presented for the first time, providing more robust results on the genetic sequence of the newly discovered S7-RNase. SNP discovery analysis coupled with the annotation of the variants detected enabled the identification of 7,781 SNPs effecting 5,661 genes in ‘Monreal’ compared to the reference genome of C. clementina. Transcriptome analysis of unpollinated pistils at the mature stage from both clementine genotypes revealed the lack of expression of S7-RNase in ‘Monreal’ suggesting its involvement in the loss of the SI response. RNA-seq analysis followed by gene ontology studies enabled the identification of 2,680 differentially expressed genes (DEGs), a significant number of those is involved in oxidoreductase and transmembrane transport activity. Merging of DNA sequencing and RNA data led to the identification of 164 DEGs characterized by the presence of at least one SNP predicted to induce mutations with a high effect on their amino acid sequence. Among them, four candidate genes referring to two Agamous-like MADS-box proteins, to MYB111 and to MLO-like protein 12 were validated. Moreover, the transcription factor MYB111 appeared to contain a binding site for the 2.0-kb upstream sequences of the S7- and S11-RNase genes. These results provide useful information about the genetic bases of SI indicating that SNPs present in their sequence could be responsible for the differential expression and the regulation of S7-RNase and consequently of the SI mechanism
    • …
    corecore