4,110 research outputs found

    Topology in SU(2) Yang-Mills theory

    Get PDF
    New results on the topology of the SU(2) Yang-Mills theory are presented. At zero temperature we obtain the value of the topological susceptibility by using the recently introduced smeared operators as well as a properly renormalized geometric definition. Both determinations are in agreement. At non-zero temperature we study the behaviour of the topological susceptibility across the confinement transition pointing out some qualitative differences with respect to the analogous result for the SU(3) gauge theory.Comment: 3 pages, 4 figures, contribution to Lattice-97. Latex file including espcrc2.st

    Renormalization and topological susceptibility on the lattice: SU(2) Yang-Mills theory

    Full text link
    The renormalization functions involved in the determination of the topological susceptibility in the SU(2) lattice gauge theory are extracted by direct measurements, without relying on perturbation theory. The determination exploits the phenomenon of critical slowing down to allow the separation of perturbative and non-perturbative effects. The results are in good agreement with perturbative computations.Comment: 12 pages + 4 figures (PostScript); report no. IFUP-TH 10/9

    Gauge-invariant quark-antiquark nonlocal condensates in lattice QCD

    Full text link
    We study, by numerical simulations on a lattice, the behaviour of the gauge-invariant quark-antiquark nonlocal condensates in the QCD vacuum with dynamical fermions. A determination is also done in the quenched approximation and the results are compared with the full-QCD case. The fermionic correlation length is extracted and compared with the analogous gluonic quantity.Comment: 14 pages, LaTeX file, + 6 PS figure

    Antimutagenic and antioxidant activity of a protein fraction from aerial parts of Urtica dioica

    Get PDF
    Abstract Context: Urtica dioica L. (Urticaceae), stinging nettle, has been employed as a folklore remedy for a wide spectrum of ailments, including urinary disorders, prostatic hyperplasia, and liver diseases. It has been also used traditionally for cancer treatment. Object: To evaluate the potential chemopreventive properties of a protein fraction from the aerial part of Urtica dioica (namely UDHL30). Materials and methods: UDHL30 has been tested for the antimutagenic activity in bacteria (50-800 Όg/plate; Ames test by the preincubation method) and for the cytotoxicity on human hepatoma HepG2 cells (0.06-2 mg/mL; 24 and 48 h incubation). Moreover, the antioxidant activity of UDHL30 (0.1-1200 Όg/mL; ABTS and superoxide-radical scavenger assays) was evaluated as potential protective mechanisms. Results: UDHL30 was not cytotoxic on HepG2 cells up to 2 mg/mL; conversely, it exhibited a strong antimutagenic activity against the mutagen 2-aminoanthracene (2AA) in all strains tested (maximum inhibition of 56, 78, and 61% in TA98, TA100, and WP2uvrA strains, respectively, at 800 Όg/plate). In addition, a remarkable scavenging activity against ABTS radical and superoxide anion (IC50 values of 19.9 ± 1.0 Όg/mL and 75.3 ± 0.9 Όg/mL, respectively) was produced. Discussion and conclusions: UDHL30 possesses antimutagenic and radical scavenging properties. Being 2AA a pro-carcinogenic agent, we hypothesize that the antimutagenicity of UDHL30 can be due to the inhibition of CYP450-isoenzymes, involved in the mutagen bioactivation. The radical scavenger ability could contribute to 2AA-antimutagenicity. These data encourage further studies in order to better define the potential usefulness of UDHL30 in chemoprevention

    A critical comparison of different definitions of topological charge on the lattice

    Full text link
    A detailed comparison is made between the field-theoretic and geometric definitions of topological charge density on the lattice. Their renormalizations with respect to continuum are analysed. The definition of the topological susceptibility, as used in chiral Ward identities, is reviewed. After performing the subtractions required by it, the different lattice methods yield results in agreement with each other. The methods based on cooling and on counting fermionic zero modes are also discussed.Comment: 12 pages (LaTeX file) + 7 (postscript) figures. Revised version. Submitted to Phys. Rev.

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests

    Improved lattice operators: the case of the topological charge density

    Get PDF
    We analyze the properties of a class of improved lattice topological charge density operators, constructed by a smearing-like procedure. By optimizing the choice of the parameters introduced in their definition, we find operators having (i) a better statistical behavior as estimators of the topological charge density on the lattice, i.e. less noisy; (ii) a multiplicative renormalization much closer to one; (iii) a large suppression of the perturbative tail (and other unphysical mixings) in the corresponding lattice topological susceptibility.Comment: 11 pages (REVTEX) + 4 (uuencoded) figure

    Regulation of CREB activation by p38 mitogen activated protein kinase during human primary erythroblast differentiation.

    Get PDF
    Among the molecular events underlying erythroid differentiation, we analyzed the signalling pathway leading to cAMP response element binding (CREB) nuclear transcription factor activation. Normal donor blood light density cells differentiated to pro-erythroblasts during the proliferative phase (10 days) of the Human Erithroblast Massive Amplification (HEMA) culture, and to orthochromatic erythroblasts, during the differentiative phase (4 additional days) of the culture. Since erythropoietin was present all over the culture, also pro-erythroblasts left in proliferative medium for 14 days continued their maturation without reaching the final steps of differentiation. p38 Mitogen Activated Protein Kinase (p38 MAPK) and CREB maximal activation occurred upon 4 days of differentiation induction, whereas a lower activation was detectable in the cells maintained in parallel in proliferative medium (14 days). Interestingly, when SB203580, a specific p38 MAPK inhibitor, was added to the culture the percentage of differentiated cells decreased along with p38 MAPK and CREB phosphorylation. All in all, our results evidence a role for p38 MAPK in activating CREB metabolic pathway in the events leading to erythroid differentiation

    High energy parton-parton amplitudes from lattice QCD and the stochastic vacuum model

    Get PDF
    Making use of the gluon gauge-invariant two-point correlation function, recently determined by numerical simulation on the lattice in the quenched approximation and the stochastic vacuum model, we calculate the elementary (parton-parton) amplitudes in both impact-parameter and momentum transfer spaces. The results are compared with those obtained from the Kr\"{a}mer and Dosch ansatz for the correlators. Our main conclusion is that the divergences in the correlations functions suggested by the lattice calculations do not affect substantially the elementary amplitudes. Phenomenological and semiempirical information presently available on elementary amplitudes is also referred to and is critically discussed in connection with some theoretical issues.Comment: Text with 11 pages in LaTeX (twocolumn form), 10 figures in PostScript (psfig.tex used). Replaced with changes, Fig.1 modified, two references added, some points clarified, various typos corrected. Version to appear in Phys. Rev.

    Perfect topological charge for asymptotically free theories

    Full text link
    The classical equations of motion of the perfect lattice action in asymptotically free d=2d=2 spin and d=4d=4 gauge models possess scale invariant instanton solutions. This property allows the definition of a topological charge on the lattice which is perfect in the sense that no topological defects exist. The basic construction is illustrated in the d=2d=2 O(3) non--linear σ\sigma--model and the topological susceptibility is measured to high precision in the range of correlation lengths Ο∈(2−60)\xi \in (2 - 60). Our results strongly suggest that the topological susceptibility is not a physical quantity in this model.Comment: Contribution to Lattice'94, 3 pages PostScript, uuencoded compresse
    • 

    corecore