367 research outputs found

    Topology and quantum states: The electron-monopole system

    Get PDF
    This paper starts by describing the dynamics of the electronmonopole system at both classical and quantum level by a suitable reduction procedure. This suggests, in order to realise the space of states for quantum systems which are classically described on topologically non-trivial configuration spaces, to consider Hilbert spaces of exterior differential forms. Among the advantages of this formulation, we present—in the case of the group SU(2), how it is possible to obtain all unitary irreducible representations on such a Hilbert space, and how it is possible to write scalar Dirac-type operators, following an idea by K¨ahler

    Causality in Schwinger's Picture of Quantum Mechanics

    Get PDF
    This paper begins the study of the relation between causality and quantum mechanics, taking advantage of the groupoidal description of quantum mechanical systems inspired by Schwinger’s picture of quantum mechanics. After identifying causal structures on groupoids with a particular class of subcategories, called causal categories accordingly, it will be shown that causal structures can be recovered from a particular class of non-selfadjoint class of algebras, known as triangular operator algebras, contained in the von Neumann algebra of the groupoid of the quantum system. As a consequence of this, Sorkin’s incidence theorem will be proved and some illustrative examples will be discussed.This researchwas funded by the Spanish Ministry of Economy and Competitiveness (MINECO), through the Severo Ochoa Programme for Centres of Excellence in RD (SEV-2015/0554), the MINECO research project PID2020-117477GB-I00, the Comunidad de Madrid project QUITEMAD+, S2013/ICE- 2801, the CONEX-Plus programme (University Carlos III of Madrid), Marie Sklodowska-Curie COFUND Action (H2020-MSCA-COFUND-2017-GA 801538). This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of “Research Funds for Beatriz Galindo Fellowships” (C&QIG-BG-CM-UC3M), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    Optimal and Automated Deployment for Microservices

    Get PDF
    Microservices are highly modular and scalable Service Oriented Architectures. They underpin automated deployment practices like Continuous Deployment and Autoscaling. In this paper, we formalize these practices and show that automated deployment - proven undecidable in the general case - is algorithmically treatable for microservices. Our key assumption is that the configuration life-cycle of a microservice is split into two phases: (i) creation, which entails establishing initial connections with already available microservices, and (ii) subsequent binding/unbinding with other microservices. To illustrate the applicability of our approach, we implement an automatic optimal deployment tool and compute deployment plans for a realistic microservice architecture, modeled in the Abstract Behavioral Specification (ABS) language

    Tubulin nitration in human gliomas

    Get PDF
    Immunohistochem. and biochem. investigations showed that significant protein nitration occurs in human gliomas, esp. in grade IV glioblastomas at the level of astrocytes and oligodendrocytes and neurons. Enhanced alpha-tubulin immunoreactivity was co-present in the same elements in the glioblastomas. Proteomic methodologies were employed to identify a nitrated protein band at 55 kDa as alpha-tubulin. Peptide mass fingerprinting procedures demonstrated that tubulin is nitrated at Tyr224 in grade IV tumor samples but is unmodified in grade I samples and in non-cancerous brain tissue. These results provide the first characterization of endogenously nitrated tubulin from human tumor samples

    Recording electrical activity from the brain of behaving octopus

    Get PDF
    : Octopuses, which are among the most intelligent invertebrates,1,2,3,4 have no skeleton and eight flexible arms whose sensory and motor activities are at once autonomous and coordinated by a complex central nervous system.5,6,7,8 The octopus brain contains a very large number of neurons, organized into numerous distinct lobes, the functions of which have been proposed based largely on the results of lesioning experiments.9,10,11,12,13 In other species, linking brain activity to behavior is done by implanting electrodes and directly correlating electrical activity with observed animal behavior. However, because the octopus lacks any hard structure to which recording equipment can be anchored, and because it uses its eight flexible arms to remove any foreign object attached to the outside of its body, in vivo recording of electrical activity from untethered, behaving octopuses has thus far not been possible. Here, we describe a novel technique for inserting a portable data logger into the octopus and implanting electrodes into the vertical lobe system, such that brain activity can be recorded for up to 12 h from unanesthetized, untethered octopuses and can be synchronized with simultaneous video recordings of behavior. In the brain activity, we identified several distinct patterns that appeared consistently in all animals. While some resemble activity patterns in mammalian neural tissue, others, such as episodes of 2 Hz, large amplitude oscillations, have not been reported. By providing an experimental platform for recording brain activity in behaving octopuses, our study is a critical step toward understanding how the brain controls behavior in these remarkable animals

    Archiving and referencing source code with Software Heritage

    Get PDF
    Software, and software source code in particular, is widely used in modern research. It must be properly archived, referenced, described and cited in order to build a stable and long lasting corpus of scientic knowledge. In this article we show how the Software Heritage universal source code archive provides a means to fully address the first two concerns, by archiving seamlessly all publicly available software source code, and by providing intrinsic persistent identifiers that allow to reference it at various granularities in a way that is at the same time convenient and effective. We call upon the research community to adopt widely this approach.Comment: arXiv admin note: substantial text overlap with arXiv:1909.1076

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2
    corecore