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Tubulin nitration in human gliomas

Gabriella Fiorea, Carlo Di Cristob, Gianluca Montic, Angela Amoresanoc, Laura Columbanod,
Pietro Puccic, Fernando A. Cioffid, Anna Di Cosmob, Anna Palumboa,∗, Marco d’Ischiac

a Zoological Station “Anton Dohrn”, Laboratory of Biochemistry and Molecular Biology, Villa Comunale, I-80121 Naples, Italy
b Department of Biological and Environmental Sciences, University of Sannio, Via Port’Arsa, 11, I-82100 Benevento, Italy

c Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy
d Department of Neurosurgery, Second University of Naples, c/o CTO, Viale Colli Aminei 21, 80131 Naples, Italy

Received 8 July 2005; received in revised form 30 September 2005; accepted 3 October 2005

Abstract

Immunohistochemical and biochemical investigations showed that significant protein nitration occurs in human gliomas, especially in grade IV
glioblastomas at the level of astrocytes and oligodendrocytes and neurones. Enhanced alpha-tubulin immunoreactivity was co-present in the same
elements in the glioblastomas. Proteomic methodologies were employed to identify a nitrated protein band at 55 kDa as alpha-tubulin. Peptide
m I samples
a ur samples.
©

K

M
a
g
b
t
c
r
s
n
i
d
n
d
s
e

e
c
m
t
s

n sev-

dur-
ated
con-

letal
o-

ibly
tion
ility

in

ation

ls of
ome

ical
rotein

0
d

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca - Università degli studi di Napoli Federico II
ass fingerprinting procedures demonstrated that tubulin is nitrated at Tyr224 in grade IV tumour samples but is unmodified in grade
nd in non-cancerous brain tissue. These results provide the first characterisation of endogenously nitrated tubulin from human tumo
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alignant neoplasms of the central nervous system express
bnormally high levels of nitric oxide synthase (NOS)[5] sug-
esting that nitric oxide (NO) and related nitrogen species may
e associated with pathophysiological processes important to

hese tumours. NO can diffuse from the site of production and
an interact with superoxide to generate peroxynitrite, a highly
eactive species that may be responsible for nitration of tyro-
ine residues in proteins to form 3-nitrotyrosine[13]. Tyrosine
itration may lead to profound structural alterations with losses

n specific biological functions and enhanced proteolytic degra-
ation by the proteasome[13,18]. However, moderate tyrosine
itration also occurs in healthy tissues without causing apparent
ysfunctions in target proteins[2]. Protein nitration was recently
uggested to be involved in signal transduction[13], cell differ-
ntiation[3] and normal embryo development[10].

Abbreviations: ES/MS, electrospray mass spectrometry; ES/MS/MS,
lectrospray tandem mass spectrometry; HPLC, high-performance liquid
hromatography; LC/MS/MS, liquid chromatography–electrospray tandem
ass spectrometry; MALDI-TOF, matrix-assisted laser desorption ionisa-

Increased levels of nitrated proteins have been detected i
eral diseases[11,20]and in some forms of cancer[7,12]. Little
is known about the target proteins for endogenous nitration
ing brain tumour progression, though elevated levels of nitr
proteins, as well as increased expression of inducible NOS
stitute an established correlate of human gliomas[5,6,9]. A
candidate target for nitration is represented by the cytoske
protein tubulin. Tubulin nitration is putatively involved in pr
tein turnover through the tyrosination/detyrosination cycle[14].
When free 3-nitrotyrosine is present in the cell, it is irrevers
incorporated into alpha-tubulin preventing its detyrosina
which is essential in cellular growth, differentiation and mot
[4,8]. Nitrotyrosination of alpha-tubulin induces alterations
cell morphology and changes in microtubule organisation[8],
though recent data showed that 3-nitrotyrosine incorpor
into alpha-tubulin is reversible and not detrimental to cells[1].
In this regard, recovery mechanisms restoring basal leve
functionally active alpha-tubulin appear to be operative in s
invertebrate systems[17].

In this paper, we used biochemical, immunohistochem
and proteomic approaches to characterise endogenous p
ion/time of flight; NOS, nitric oxide synthase; SDS–PAGE, sodium dodecyl
ulfate–polyacrylamide gel electrophoresis; TFA, trifluoroacetic acid
∗ Corresponding author. Tel.: +39 081 5833276/293; fax: +39 081 7641355.
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nitration in human gliomas. We demonstrated that tubulin is a
target of nitration in these tumours with modification essentially
occurring at a specific tyrosine residue different from that pre-
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viously reported under physiologically relevant conditions in
PC12 cells[19].

Brain tumour specimens were obtained from patients oper-
ated on at the Neurosurgery Department, Second University of
Naples. All patients or legal guardians gave informed consent for
this study (according to the Declaration of Helsinki and the Insti-
tutional Review Board of the Second University of Naples). They
were given detailed information about the aim of the research,
experimental procedures and methodologies. Surgical decision-
making was independent of the present study. Tumour type and
grade were determined by histological assessment according to
the World Health Organisation criteria for the grading of brain
tumours. The grading system is grades I–IV. Grade I tumours are
the least malignant and grow only very slowly, whereas grade
IV tumours are more malignant and grow faster.

Patient 1: 56-year-old male, left fronto-temporal craniotomy.
A rosaceous lesion infiltrating the temporal tip was excised.
Histological examination showed low-to-mild proliferation of
pseudo-spongioblastic glial fibrillar acidic protein-positive ele-
ments with Rosenthal fibres. Diagnosis: grade I pilocytic astro-
cytoma.

Patient 2: 45-year-old male, who underwent left frontal cran-
iotomy to remove a frontal lesion (3 cm diameter) localised
by echo guidance at a depth of 2 cm. Histological examination
showed high proliferation of cells with monotonous round nuclei
with eccentric rim of eosinophilic cytoplasm. Diagnosis: grade
I
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phenylmethylsulfonyl fluoride. Homogenates were centrifuged
at 18,000× g for 20 min and the extracts were subjected to west-
ern blotting for nitrated protein analysis. Protein concentration
was determined using a Bio-Rad protein assay reagent (Bio-Rad,
Milan, Italy) with bovine serum albumin as a standard.

Sodium dodecyl sulfate–polyacrylamide gel electrophore-
sis (SDS–PAGE) was carried out as reported[17] using an
acrylamide concentration of 7.5%. Rabbit polyclonal antibody
against 3-nitrotyrosine (1:1000) (Chemicon) was used.

For immunohistochemistry, tissues were treated as previously
described[17]. The primary antibodies were rabbit polyclonal
antibody against 3-nitrotyrosine (1:100) (Chemicon) and mouse
monoclonal anti-alpha-tubulin (1: 5000) (Sigma).

Coomassie blue-stained protein bands were excised from
SDS gels and in situ digested as described previously[15].

Matrix-assisted laser desorption ionisation/time of flight
(MALDI-TOF) mass spectra were recorded using an Applied
Biosystem Voyager DE-PRO instrument. A mixture of ana-
lyte and matrix solution (alfa-cyano-hydroxycinnamic acid
10 mg/ml in 66% acetonitrile, 0.1% TFA, in MilliQ water) was
applied to the metallic sample plate and dried down at room
temperature. Mass calibration was performed using external
peptide standards. Raw data were analysed using the computer
software provided by the manufacturer and reported as monoiso-
topic masses. Peptide masses of each digested protein were used
to search for protein databases using three different mass fin-
g tein
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I oligodendroglioma.
Patient 3: 53-year-old male, operated for right fro

lioblastoma 2 years earlier, who underwent right frontal c
otomy for a recurrent tumour. An intraoperative ecogra
ocalised a neoplasm at 1 cm depth from the smooth fr
erebral circumvolutions. Histological examination showed
iferation of anaplastic elements with high mitotic activity a
eovascularisation as well as areas of necrosis. Diagnosis:

V glioblastoma.
Patient 4: 64-year-old male, left frontoparietal cranioto

he lesion (3 cm maximal diameter) was localised with e
uidance at a depth of 2 cm. Histological examination sho
igh proliferation of small lymphocyte-like elements with h
itotic activity and frequent necrotic areas and pseudoro
iagnosis: grade IV glioblastoma.
Patient 5: 79-year-old female, parieto-occipital cranioto
rosaceous cortical–sub-cortical neoplasm was compl

emoved. Histological examination showed high prolifera
f glial anaplastic and plurinucleate elements with prolif

ion of vessels, and haemorrhagic areas. Diagnosis: gra
lioblastoma.

Pathological specimens obtained from neurosurgery
ither frozen immediately at−80◦C and analysed within 1 da
r prepared for immunohistochemistry. Trypsin, dithiothre

odoacetamide and�-cyano-4-hydroxycinnamic acid were p
hased from Sigma. High-performance liquid chromatogra
HPLC) grade trifluoroacetic acid (TFA) was from Carlo Er
ll other reagents and solvents were from Baker and were o
ighest purity available.

Brain samples were homogenised in 25 mM Tris bu
pH 7.4) containing 100 mM NaCl, 1 mM EDTA and 1 m
l

de

.

V

erprinting softwares available on the net: MsFit from Pro
rospector, Mascot from Matrix Science and ProFound
rowl.
Tryptic peptide mixtures obtained from in s

igestions were also analysed by “on-line” Liq
hromatography–Electrospray Tandem Mass Spectr

ry (LC/MS/MS) using an LCQ ion trap instrument (Finnig
orp., San Jośe, CA, USA). Proteolytic digests were fra

ionated on a HP 1100 HPLC apparatus (Hewlett-Pac
alo Alto, CA, USA) using a narrowbore Phenomenex Ju
18 column (250 mm× 2.1 mm, 300̊A) (Torrance, CA, USA
ith 0.05% TFA, 5% formic acid in MilliQ water (solve
) and 0.05% TFA, 5% formic acid in acetonitrile (solve
) by means of a linear gradient from 5 to 70% solvent B
0 min at a flow rate of 0.2 ml/min. The effluent was dire

nserted into the ion source through the electrospray prob
oth electrospray mass spectrometry (ES/MS) and electro

andem mass spectrometry (ES/MS/MS) spectra were acq
hroughout the entire analysis by using the software prov
ith the instrument.
Protein nitration was determined in five brain tumour

ical specimens, including astrocytomas, oligodendroglio
nd highly malignant glioblastomas. Elevated tyrosine n

ion was observed in all tumours as determined by nitro
ine immunoreactivity. However, significant differences w
bserved in individual samples as reported inFig. 1. In astro-
ytoma (grade I), immunoreactivity to nitrotyrosine was c
ned to few glial cells of different size. Some neurones sho
ositive immunoreaction, and no response was observ

he stroma (Fig. 1A). In oligodendroglioma (grade II) glia
ells exhibited cytoplasmic immunoreactivity to nitrotyrosine
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Fig. 1. 3-Nitrotyrosine immunohistochemical staining of human gliomas. (A) Astrocytoma (grade I). Immunoreactivity is confined to spherical glialcells. Stain
was absent in the stroma. (B) Oligodendroglioma (grade II). Immunoreactivity is present in glial cells and a weak stain is present in the stroma. (C) Representative
glioblastoma (grade IV; sample 5). Immunoreactivity is present in many glial and neuronal elements. Note the very intense immunostaining in the stroma. (D)
Pre-absorption of anti-3-nitrotyrosine with 3-nitrotyrosine as control completely blocked immunostaining. (E) Sections of areas of minimally invaded brain from the
same pathological sections of the glioma patients stained with antibodies to 3-nitrotyrosine. Little or no nitration was observed. Scale bars = 100�m.

weak and diffuse immunoreactivity was observed in the stroma
(Fig. 1B). In all samples of malignant glioblastomas (grade IV)
which are characterised by rapid growth, vascular proliferation
and oedema, and express relatively high levels of NOS I and
NOS II [5] the patterns of nitrotyrosine immunoreactivity were
similar. Strong nitrotyrosine immunopositivity was present in
many glial as well as neuronal elements (Fig. 1C). In some cases
immunopositive cells seemed to be plurinucleated. Along the
necrosis areas, immunoreactive elements were organised as clus-
ters. Strong immunoreactivity was also observed in the stroma.
Pre-incubation of the nitrotyrosine antibody with 3-nitrotyrosine
as control completely blocked immunostaining from a serial sec-
tion of the same tumour (Fig. 1D). Little or no nitration was
observed in areas of minimally invaded brain from the same
pathological sections of the glioma patients (Fig. 1E).

Investigation on the presence of alpha-tubulin in the same
samples assayed for nitrotyrosine immunoreactivity was per-
formed using specific anti-tubulin antibodies (Fig. 2). Tubu-
lin immunoreactivity was normally observed in both neuronal
and glial elements. However, immunohistochemical analyses

revealed that tubulin location within the different classes of
elements changes as the degree of malignancy increases, indi-
cating a non-uniform expression of the antigen. In fact, in both
astrocytoma (grade I,Fig. 2A) and oligodendroglioma (grade II,
Fig. 2B), as well as in not invaded areas (Fig. 2E), immunopos-
itivity to the alpha-tubulin was identified in neuronal elements,
especially fibres and nerve endings. In the oligodendroglioma,
however, some glial cells displayed an intense immunostaining
(Fig. 2B). In the malignant glioblastoma (grade IV), even though
immunoreactivity is still present in the neuronal elements, tubu-
lin was strongly immunodetected in the glial elements (Fig. 2C).
Controls performed by omitting primary antibody revealed no
tubulin immunoreactivity (Fig. 2D).

Identification of nitrated proteins in tumour samples was
accomplished by proteomic approaches. Protein extracts from
the five brain tumour samples were fractionated by SDS–PAGE
(Fig. 3). All extracts exhibited well-detectable nitrated protein
bands at 33 (a), 40 (b) and 55 kDa (e), four showed an additional
band at 45 kDa (c) and one had a distinct band at 50 kDa (d).
The Coomassie-stained bands corresponding to the immunore-
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Fig. 2. Alpha-tubulin immunoreactivity in human gliomas. (A) Astrocytoma (grade I). Immunoreactivity is present in fibres and nerve endings. (B) Oligodendroglioma
(grade II). Immunoreactivity is mainly present in fibres, but some glial cells show immunoreactivity (arrow). (C) Glioblastoma (grade IV; sample 5).Alpha-tubulin
strong immunopositivity is widely distributed to many glial (arrows) and neuronal elements. (D) Omission of anti-alpha-tubulin as control completely blocked
immunostaining. (E) Sections of areas of minimally invaded brain from the same pathological sections of the glioma patients stained with antibodiesto alpha-tubulin.
Immunostaining is present in fibres. Scale bars = 70�m in (A and C); 150�m in (B, D and E).

active proteins were excised from the gels, reduced, alkylated
and in situ digested with trypsin.Fig. 4shows the partial MALDI
mass spectrum of a peptide mixture from the tryptic digest of the
55 kDa protein from sample 4, taken as representative sample.
Mass signals were used to search for a non-redundant sequence
database using three different softwares available on the net,

taking advantage of the specificity of trypsin and the taxonomic
category of the sample. The set of mass values was compared
to the theoretically predicted peptides from the proteins in the
explored database. A set of 17 mass values matched within
human tubulin alpha 6 sequence with a mass accuracy better
than 80 ppm.

Fig. 3. SDS electrophoresis of protein extracts from brain tumour samples. Lanes 1A–5A: Coomassie-stained gels. Lanes 1B–5B: Western Blot. Lane numbers
correspond to patient identification numbers.
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Fig. 4. Partial MALDI mass spectrum of the peptide digest from the band at 55 kDa. Mass signals were assigned to the corresponding peptides within tubulin alpha
6 sequence on the basis of their mass values. Nitrated 216–229 peptide is indicated with (NO2). Trypsin autoproteolysis peaks are marked with an asterisk (*).

All the other putative candidates received a very low prob-
ability score, thus leading to the identification of tubulin as
the protein component. The mass spectral analysis led to a
sequence coverage of the tubulin primary structure greater than
46%. Moreover, investigation of the MALDI spectrum led to
the identification of the nitration site. Two related signals atm/z
1763. 9 and 1718.9, respectively, were detected in the spectrum
that exhibited a mass difference of 45 Da, corresponding to a
nitro group. The peakm/z 1718.9 was assigned to the fragment
216–229 within tubulin sequence whereas the satellite signal at
m/z 1763.9 corresponded to the peptide carrying a 3-nitro tyro-
sine residue. Since this fragment contains a single Tyr residue
at position 224, the modification site was unambiguously deter-
mined.

Although a high percentage of the protein sequence could
be mapped by MALDI mass fingerprinting, some sequence por-
tions escaped identification. The peptide mixture was then sub-
mitted to LC/MS/MS analysis. The peptide sequences obtained
from the interpretation of tandem mass spectra were used to con-
firm MALDI identification and led to an increase in the sequence
coverage which raised to 53%. Several tyrosine containing pep-
tides were identified by the mass spectrometric procedures, thus
leading to the identification of 10 Tyr residues that resulted to
be unmodified (Tyr 83, Tyr 103, Tyr 108, Tyr 262, Tyr 272, Tyr
312, Tyr 319, Tyr 357, Tyr 393, Tyr 408). However, a few tyro-
sine residues escaped identification and their modification state
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glioblastoma sample whereas this peak was completely absent
in the low-grade tumour sample. The remaining portions of the
spectra of the two samples were almost identical. Similarly,
the mass signals corresponding to the nitropeptide 216–229
were detected in the other glioblastoma samples. No detectable
tyrosine nitration was observed in the peptide 216–229 in non-
cancerous brain tissue (data not shown).

In this study we reported immunohistochemical evidence
indicating elevated protein nitration and tubulin expression in

Fig. 5. Partial MALDI mass spectrum of the mixtures from the tryptic digest of
the tubulin band in malignant glioblastoma (grade IV; sample 4, panel a) and in
astrocytoma (grade I; sample 1, panel b).
ould not be monitored.
The presence of tubulin in the protein extracts from

emaining four brain tumours (samples 1, 2, 3 and 5)
ssessed using the same procedure. However, different r
n the occurrence of 3-nitrotyrosine in tubulin in the differ

umour grades were obtained. As an example,Fig. 5shows the
artial MALDI spectrum of the peptide mixtures from the tr

ic digest of the tubulin band in malignant glioblastoma (gr
V; sample 4, panel a) and in astrocytoma (grade I; samp
anel b). The mass signal corresponding to the nitrated fo

he peptide 216–229 was clearly detected atm/z 1763.9 in the
lts

,
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human gliomas compared to non-cancerous brain tissues, with
an apparently higher immunochemical response in glioblastoma
(grade IV) samples. Tubulin immunoreactivity becomes maxi-
mal in the glial elements as the neoplasm progresses, mirroring
the results of nitrotyrosine immunodetection. Finally, both anti-
gens are extremely immunoreactive in glial cells in advanced
grade tumours.

Proteomic investigation of protein extracts from grade IV
tumour tissues provided direct evidences that tubulin is nitrated
under severely pathological conditions. In particular, peptide
mass fingerprinting procedures allowed us to identify Tyr224
as a specific nitration site of alpha-tubulin in grade IV human
glioma samples. On the contrary, this residue was found to be
unmodified in lower grade tumours, e.g. astrocytoma (grade I)
or in control tissues. To the best of our knowledge, this is the
first identification of an in vivo site of endogenous nitration of
alpha-tubulin in human tumour tissues. Mass spectral analyses
led to the identification of 10 further Tyr residues that were found
unmodified.

Alpha-tubulin contains 18 or 19 tyrosine residues depend-
ing on the presence of the C-terminal tyrosine which can be
lost following specific proteolytic processing events[21]. These
residues are not equally susceptible to nitration, and several
structural factors responsible for selective post-translational
modification have been proposed. A mass spectrometric char-
acterisation of nitrated alpha-tubulin in PC12 cells undergoing
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