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Abstract. Microservices are highly modular and scalable Service Ori-
ented Architectures. They underpin automated deployment practices like
Continuous Deployment and Autoscaling. In this paper we formalize
these practices and show that automated deployment — proven undecid-
able in the general case — is algorithmically treatable for microservices.
Our key assumption is that the configuration life-cycle of a microservice
is split into two phases: (i) creation, which entails establishing initial con-
nections with already available microservices, and (ii) subsequent bind-
ing/unbinding with other microservices. To illustrate the applicability
of our approach, we implement an automatic optimal deployment tool
and compute deployment plans for a realistic microservice architecture,
modeled in the Abstract Behavioral Specification (ABS) language.

1 Introduction

Inspired by service-oriented computing, Microservices structure software appli-
cations as highly modular and scalable compositions of fine-grained and loosely-
coupled services [18]. These features support modern software engineering prac-
tices, like continuous delivery/deployment [30] and application autoscaling [3].
Currently, these practices focus on single microservices and do not take advan-
tage of the information on the interdependencies within an architecture. On
the contrary, architecture-level deployment supports the global optimization of
resource usage and avoids “domino” effects due to unstructured scaling actions
that may cause cascading slowdowns or outages [27,35,39].

In this paper, we formalize the problem of automatic deployment and recon-
figuration (at the architectural level) of microservice systems, proving formal
properties and presenting an implemented solution.

In our work, we follow the approach taken by the Aeolus component
model [13–15], which was used to formally define the problem of deploying
component-based software systems and to prove that, in the general case, such
problem is undecidable [15]. The basic idea of Aeolus is to enrich the specification
of components with a finite state automaton that describes their deployment life
cycle. Previous work identified decidable fragments of the Aeolus model: e.g.,
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removing from Aeolus replication constraints (e.g., used to specify a minimal
amount of services connected to a load balancer) makes the deployment problem
decidable, but non-primitive recursive [14]; removing also conflicts (e.g., used to
express the impossibility to deploy in the same system two types of components)
makes the problem PSpace-complete [34] or even poly-time [15], but under the
assumption that every required component can be (re)deployed from scratch.

Our intuition is that the Aeolus model can be adapted to formally reason on
the deployment of microservices. To achieve our goal, we significantly revisit the
formalization of the deployment problem, replacing Aeolus components with a
model of microservices. The main difference between our model of microservices
and Aeolus components lies in the specification of their deployment life cycle.
Here, instead of using the full power of finite state automata (like in Aeolus and
other TOSCA-compliant deployment models [10]), we assume microservices to
have two states: (i) creation and (ii) binding/unbinding. Concerning creation,
we use strong dependencies to express which microservices must be immediately
connected to newly created ones. After creation, we use weak dependencies to
indicate additional microservices that can be bound/unbound. The principle
that guided this modification comes from state-of-the-art microservice deploy-
ment technologies like Docker [36] and Kubernetes [29]. In particular, the weak
and strong dependencies have been inspired by Docker Compose [16] (a lan-
guage for defining multi-container Docker applications) where it is possible to
specify different relationships among microservices using, e.g., the depends on
(resp. external links) modalities that force (resp. do not force) a specific startup
order similarly to our strong (resp. weak) dependencies. Weak dependencies are
also useful to model horizontal scaling, e.g., a load balancer that is bound to/un-
bound from many microservice instances during its life cycle.

In addition, w.r.t. the Aeolus model, we also consider resource/cost-aware
deployments, taking inspiration from the memory and CPU resources found
in Kubernetes. Microservice specifications are enriched with the amount of
resources they need to run. In a deployment, a system of microservices runs
within a set of computation nodes. Nodes represent computational units (e.g.,
virtual machines in an Infrastructure-as-a-Service Cloud deployment). Each node
has a cost and a set of resources available to the microservices it hosts.

On the model above, we define the optimal deployment problem as follows:
given an initial microservice system, a set of available nodes, and a new target
microservice to be deployed, find a sequence of reconfiguration actions that, once
applied to the initial system, leads to a new deployment that includes the target
microservice. Such a deployment is expected to be optimal, meaning that the
total cost (i.e., the sum of the costs) of the nodes used is minimal. We show that
this problem is decidable by presenting an algorithm working in three phases:
(1) generate a set of constraints whose solution indicates the microservices to be
deployed and their distribution over the nodes; (2) generate another set of con-
straints whose solution indicates the connections to be established; (3) synthesize
the corresponding deployment plan. The set of constraints includes optimization
metrics that minimize the overall cost of the computed deployment.
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Fig. 1. Example of microservice deployment (blue boxes: nodes; green boxes: microser-
vices; continuous lines: the initial configuration; dashed lines: full configuration). (Color
figure online)

The algorithm has NEXPTIME complexity because, in the worst-case, the
length of the deployment plan could be exponential in the size of the input.
However, we consider this worst-case unfeasible in practice, as the number
of microservices deployable on one node is limited by the available resources.
Under the assumption that each node can host at most a polynomial amount
of microservices, the deployment problem is NP-complete and the problem of
deploying a system minimizing its total cost is an NP-optimization problem.
Moreover, having reduced the deployment problem in terms of constraints, we
can exploit state-of-the-art constraint solvers [12,23,24] that are frequently used
in practice to cope with NP-hard problems.

To concretely evaluate our approach, we consider a real-world microservice
architecture, inspired by the reference email processing pipeline from Iron.io [22].
We model that architecture in the Abstract Behavioral Specification (ABS) lan-
guage, a high-level object-oriented language that supports deployment model-
ing [31]. We use our technique to compute two types of deployments: an initial
one, with one instance for each microservice, and a set of deployments to hor-
izontally scale the system depending on small, medium or large increments in
the number of emails to be processed. The experimental results are encouraging
in that we were able to compute deployment plans that add more than 30 new
microservice instances, assuming availability of hundreds of machines of three
different types, and guaranteeing optimality.

2 The Microservice Optimal Deployment Problem

We model microservice systems as aggregations of components with ports.
Each port exposes provided and required interfaces. Interfaces describe offered
and required functionalities. Microservices are connected by means of bindings
indicating which port provides the functionality required by another port. As
discussed in the Introduction, we consider two kinds of requirements: strong
required interfaces, that need to be already fulfilled when the microservice is
created, and weak required interfaces, that must be fulfilled at the end of a
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deployment (or reconfiguration) plan. Microservices are enriched with the spec-
ification of the resources they need to properly run; such resources are provided
to the microservices by nodes. Nodes can be seen as the unit of computation
executing the tasks associated to each microservice.

As an example, in Fig. 1 we have reported the representation of the deploy-
ment of a microservice system inspired by the email processing pipeline that
we will discuss in Sect. 3. Here, we consider a simplified pipeline. A Message
Receiver microservice handles inbound requests, passing them to a Message Ana-
lyzer that checks the email content and sends the attachments for inspection to
an Attachment Analyzer. The Message Receiver has a port with a weak required
interface that can be fulfilled by Message Analyzer instances. This requirement is
weak, meaning that the Message Receiver can be initially deployed without any
connection to instances of Message Analyzer. These connections can be estab-
lished afterwards and reflect the possibility to horizontally scale the application
by adding/removing instances of Message Analyzer. This last microservice has
instead a port with a strong required interface that can be fulfilled by Attachment
Analyzer instances. This requirement is strong to reflect the need to immediately
connect a Message Analyzer to its Attachment Analyzer.

Figure 1 presents a reconfiguration that, starting from the initial deploy-
ment depicted in continuous lines, adds the elements depicted with dashed lines.
Namely, a couple of new instances of Message Analyzer and a new instance of
Attachment Analyzer are deployed. This is done in order to satisfy numerical
constraints associated to both required and provided interfaces. For required
interfaces, the numerical constraints indicate lower bounds to the outgoing bind-
ings, while for provided interfaces they specify upper bounds to the incoming
connections. Notice that the constraint ≥ 3 associated to the weak required
interface of Message Receiver is not initially satisfied; this is not problematic
because constraints on weak interfaces are relevant only at the end of a recon-
figuration. In the final deployment, such a constraint is satisfied thanks to the
two new instances of Message Analyzer. These two instances need to be immedi-
ately connected to an Attachment Analyzer: only one of them can use the initially
available Attachment Analyzer, because of the constraint ≤ 2 associated to the
corresponding provided interface. Hence, a new instance of Attachment Analyzer
is added.

We also model resources: each microservice has associated resources that it
consumes (see the CPU and RAM quantities associated to the microservices in
Fig. 1). Resources are provided by nodes, that we represent as containers for the
microservice instances, providing them the resources they require. Notice that
nodes have also costs: the total cost of a deployment is the sum of the costs
of the used nodes (e.g., in the example the total cost is 598 cents per hour,
corresponding to the cost of 4 nodes: 2 C4 large and 2 C4 xlarge virtual machine
instances of the Amazon public Cloud).

We now move to the formal definitions. We assume the following disjoint sets:
I for interfaces, Z for microservices, and a finite set R for kinds of resources.
We use N to denote natural numbers, N+ for N \ {0}, and N

+
∞ for N

+ ∪ {∞}.
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Definition 1 (Microservice type). The set Γ of microservice types, ranged
over by T1, T2, . . ., contains 5-ples 〈P,Ds,Dw, C,R〉 where:

– P = (I �→ N
+
∞) are the provided interfaces, defined as a partial function from

interfaces to corresponding numerical constraints (indicating the maximum
number of connected microservices);

– Ds = (I �→ N
+) are the strong required interfaces, defined as a partial func-

tion from interfaces to corresponding numerical constraints (indicating the
minimum number of connected microservices);

– Dw = (I �→ N) are the weak required interfaces (defined as the strong ones,
with the difference that also the constraint 0 can be used indicating that it is
not strictly necessary to connect microservices);

– C ⊆ I are the conflicting interfaces;
– R = (R → N) specifies resource consumption, defined as a total function

from resources to corresponding quantities indicating the amount of required
resources.

We assume sets dom(Ds), dom(Dw) and C to be pairwise disjoint.1

Notation: given a microservice type T = 〈P,Ds,Dw, C,R〉, we use the following
postfix projections .prov, .reqs, .reqw, .conf and .res to decompose it; e.g., T .reqw
returns the partial function associating arities to weak required interfaces. In
our example, for instance, the Message Receiver microservice type is such that
Message Receiver.reqw(MA) = 3 and Message Receiver.res(RAM) = 4. When the
numerical constraints are not explicitly indicated, we assume as default value
∞ for provided interfaces (i.e., they can satisfy an unlimited amount of ports
requiring the same interface) and 1 for required interfaces (i.e., one connection
with a port providing the same interface is sufficient).

Inspired by [14], we allow a microservice to specify a conflicting interface
that, intuitively, forbids the deployment of other microservices providing the
same interface. Conflicting interfaces can be used to express conflicts among
microservices, preventing both of them to be present at the same time, or cases
in which only one microservice instance can be deployed (e.g., a consistent and
available microservice that can not be replicated).

Since the requirements associated with strong interfaces must be immediately
satisfied, it is possible to deploy a configuration with circular dependencies only
if at least one weak required interface is involved in the cycle. In fact, having a
cycle with only strong required interfaces would mean to deploy all the microser-
vices involved in the cycle simultaneously. We now formalize a well-formedness
condition on microservice types to guarantee the absence of such configurations.

Definition 2 (Well-formed Universe). Given a finite set of microservice
types U (that we also call universe), the strong dependency graph of U is
as follows: G(U) = (U, V ) with V = {(T , T ′)|T , T ′ ∈ U ∧ ∃p ∈ I.p ∈
dom(T .reqs) ∩ dom(T ′.prov)}. The universe U is well-formed if G(U) is acyclic.
1 Given a partial function f , we use dom(f) to denote the domain of f , i.e., the set

{e | ∃e′ : (e, e′) ∈ f}.



356 M. Bravetti et al.

In the following, we always assume universes to be well-formed. Well-formedness
does not prevent the specification of microservice systems with circular depen-
dencies, which are captured by cycles with at least one weak required interface.

Definition 3 (Nodes). The set N of nodes is ranged over by o1, o2, . . . We
assume the following information to be associated to each node o in N .

– A function R = (R → N) that specifies node resource availability: we use
o.res to denote such a function.

– A value in N that specifies node cost: we use o.cost to denote such a value.

As example, in Fig. 1, the node Node1 large is such that Node1 large.res(RAM) =
4 and Node1 large.cost = 100.

We now define configurations that describe systems composed of microservice
instances and bindings that interconnect them. A configuration, ranged over by
C1, C2, . . ., is given by a set of microservice types, a set of deployed microservices
(with their associated type), and a set of bindings. Formally:

Definition 4 (Configuration). A configuration C is a 4-ple 〈Z, T,N,B〉
where:

– Z ⊆ Z is the set of the currently deployed microservices;
– T = (Z → T ) are the microservice types, defined as a function from deployed

microservices to microservice types;
– N = (Z → N ) are the microservice nodes, defined as a function from deployed

microservices to nodes that host them;
– B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed of an inter-

face, the microservice that requires that interface, and the microservice that
provides it; we assume that, for (p, z1, z2) ∈ B, the two microservices z1 and
z2 are distinct and p ∈ (dom(T (z1).reqs)∪dom(T (z1).reqw))∩dom(T (z2).prov).

In our example, if we use mr to refer to the instance of Message Receiver, and
ma for the initially available Message Analyzer, we will have the binding (MA,
mr, ma). Moreover, concerning the microservice placement function N , we have
N(mr) = Node1 large and N(ma) = Node2 xlarge.

We are now ready to formalize the notion of correctness of configuration.
We first define a provisional correctness, considering only constraints on strong
required and provided interfaces, and then we define a general notion of config-
uration correctness, considering also weak required interfaces and conflicts. The
former is intended for transient configurations traversed during the execution of
a reconfiguration, while the latter for the final configuration.

Definition 5 (Provisionally correct configuration). A configuration C =
〈Z, T,N,B〉 is provisionally correct if, for each node o∈ran(N), it holds2

∀ r∈R. o.res(r) ≥
∑

z∈Z,N(z)=o

T (z).res(r)

and, for each microservice z ∈ Z, both following conditions hold:
2 Given a (partial) function f , we use ran(f) to denote the range of f , i.e., the function

image set {f(e) | e ∈ dom(f)}.
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– (p �→ n) ∈ T (z).reqs implies that there exist n distinct microservices
z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

– (p �→ n) ∈ T (z).prov implies that there exist no m distinct microservices
z1, . . . , zm ∈ Z \{z}, with m > n, such that, for every 1 ≤ i ≤ m, we have
〈p, zi, z〉 ∈ B.

Definition 6 (Correct configuration). A configuration C = 〈Z, T,N,B〉 is
correct if C is provisionally correct and, for each microservice z ∈ Z, both fol-
lowing conditions hold:

– (p �→ n) ∈ T (z).reqw implies that there exist n distinct microservices
z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

– p∈T (z).conf implies that, for each z′ ∈ Z\{z}, we have p /∈ dom(T (z′).prov).

Notice that, in the example in Fig. 1, the initial configuration (in continuous
lines) is only provisionally correct in that the weak required interface MA (with
arity 3) of the Message Receiver is not satisfied (because there is only one outgoing
binding). The full configuration — including also the elements in dotted lines —
is instead correct: all the constraints associated to the interfaces are satisfied.

We now formalize how configurations evolve by means of atomic actions.

Definition 7 (Actions). The set A contains the following actions:

– bind(p, z1, z2) where z1, z2∈Z, with z1 �=z2, and p∈I: add a binding between
z1 and z2 on port p (which is supposed to be a weak-require port of z1 and a
provide port of z2);

– unbind(p, z1, z2) where z1, z2∈Z, with z1 �=z2, and p∈I: remove the specified
binding on p (which is supposed to be a weak required interface of z1 and a
provide port of z2);

– new(z, T , o, Bs) where z∈Z, T ∈Γ, o∈N and Bs =(dom(T .reqs)→2Z−{z});
with Bs (representing bindings from strong required interfaces in T to sets of
microservices) being such that, for each p ∈ dom(T .reqs), it holds |Bs(p)| ≥
T .reqs(p): add a new microservice z of type T hosted in o and bind each of
its strong required interfaces to a set of microservices as described by Bs;3

– del(z) where z∈Z: remove the microservice z from the configuration and all
bindings involving it.

In our example, assuming that the initially available Attachment Analyzer
is named aa, we have that the action to create the initial instance of Message
Analyzer is new(ma,MessageAnalyzer,Node2 xlarge, (AA �→ {aa})). Notice that it
is necessary to establish the binding with the Attachment Analyzer because of
the corresponding strong required interface.

The execution of actions can now be formalized using a labeled transition
system on configurations, which uses actions as labels.

3 Given sets S and S′ we use: 2S to denote the power set of S, i.e., the set {S′ | S′ ⊆ S};
S − S′ to denote set difference; and |S| to denote the cardinality of S.
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Definition 8 (Reconfigurations). Reconfigurations are denoted by transitions
C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈Z, T,N,B〉 are
defined as follows:

C bind(p,z1,z2)−−−−−−−−→ 〈Z, T,N,B ∪ 〈p, z1, z2〉〉
if 〈p, z1, z2〉 	∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C unbind(p,z1,z2)−−−−−−−−−−→ 〈Z, T,N,B\〈p, z1, z2〉〉
if 〈p, z1, z2〉 ∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C new(z,T ,o,Bs)−−−−−−−−−→ 〈Z ∪ {z}, T ′, N ′, B′〉
if z 	∈ Z and
∀ p ∈ dom(T .reqs). ∀z′ ∈ Bs(p).

p ∈ dom(T (z′).prov) and
T ′ = T ∪ {(z �→ T )} and
N ′ = N ∪ {(z �→ o)} and
B′ = B ∪ {〈p, z, z′〉 | z′ ∈ Bs(p)}

C del(z)−−−−→ 〈Z\{z}, T ′, N ′, B′〉
if T ′ = {(z′ �→ T ) ∈ T | z 	= z′} and
N ′ = {(z′ �→ o) ∈ N | z 	= z′} and
B′ = {〈p, z1, z2〉 ∈ B | z 	∈ {z1, z2}}

A deployment plan is simply a sequence of actions that transform a pro-
visionally correct configuration (without violating provisional correctness along
the way) and, finally, reach a correct configuration.

Definition 9 (Deployment plan). A deployment plan P from a provisionally
correct configuration C0 is a sequence of actions α1, . . . , αm such that:

– there exist C1, . . . , Cm provisionally correct configurations, with Ci−1
αi−→ Ci

for 1 ≤ i ≤ m, and
– Cm is a correct configuration.

Deployment plans are also denoted with C0
α1−→ C1

α2−→ · · · αm−−→ Cm.

In our example, a deployment plan that reconfigures the initial provisionally
correct configuration into the final correct one is as follows: a new action to
create the new instance of Attachment Analyzer, followed by two new actions
for the new Message Analyzers (as commented above, the connection with the
Attachment Analyzer is part of these new actions), and finally two bind actions
to connect the Message Receiver to the two new instances of Message Analyzer.

We now have all the ingredients to define the optimal deployment problem,
that is our main concern: given a universe of microservice types, a set of available
nodes and an initial configuration, we want to know whether and how it is
possible to deploy at least one microservice of a given microservice type T by
optimizing the overall cost of nodes hosting the deployed microservices.

Definition 10 (Optimal deployment problem). The optimal deployment
problem has, as input, a finite well-formed universe U of microservice types, a
finite set of available nodes O, an initial provisionally correct configuration C0

and a microservice type Tt ∈ U . The output is:
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– A deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm such that
• for all Ci = 〈Zi, Ti, Ni, Bi〉, with 1 ≤ i ≤ m, it holds ∀z ∈ Zi. Ti(z) ∈

U ∧ Ni(z) ∈ O, and
• Cm = 〈Zm, Tm, Nm, Bm〉 satisfies ∃z ∈ Zm : Ti(z) = Tt;

if there exists one. In particular, among all deployment plans satisfying
the constraints above, one that minimizes

∑
o∈O.(∃z.Nm(z)=o) o.cost (i.e., the

overall cost of nodes in the last configuration Cm), is outputted.
– no (stating that no such plan exists); otherwise.

We are finally ready to state our main result on the decidability of the opti-
mal deployment problem. To prove the result we describe an approach that splits
the problem in three incremental phases: (1) the first phase checks if there is a
possible solution and assigns microservices to deployment nodes, (2) the inter-
mediate phase computes how the microservices need to be connected to each
other, and (3) the final phase synthesizes the corresponding deployment plan.

Theorem 1. The optimal deployment problem is decidable.

Proof. The proof is in the form of an algorithm that solves the optimal deploy-
ment problem. We assume that the input to the problem to be solved is given
by U (the microservice types), O (the set of available nodes), C0 (the initial
provisionally correct configuration), and Tt ∈ U (the target microservice type).
We use I(U) to denote the set of interfaces used in the considered microservice
types, namely I(U) =

⋃
T ∈U dom(T .reqs) ∪ dom(T .reqw) ∪ dom(T .prov) ∪ T .conf.

The algorithm is based on three phases.
Phase 1 The first phase consists of the generation of a set of constraints that,

once solved, indicates how many instances should be created for each microser-
vice type T (denoted with inst(T )), how many of them should be deployed on
node o (denoted with inst(T , o)), and how many bindings should be established
for each interface p from instances of type T — considering both weak and strong
required interfaces — and instances of type T ′ (denoted with bind(p, T , T ′)).
We also generate an optimization function that guarantees that the generated
configuration is minimal w.r.t. its total cost.

We now incrementally report the generated constraints. The first group of
constraints deals with the number of bindings:

∧

p∈I(U)

∧

T ∈U, p∈dom(T .reqs)

T .reqs(p) · inst(T ) ≤
∑

T ′∈U

bind(p, T , T ′) (1a)

∧

p∈I(U)

∧

T ∈U, p∈dom(T .reqw)

T .reqw(p) · inst(T ) ≤
∑

T ′∈U

bind(p, T , T ′) (1b)

∧

p∈I(U)

∧

T ∈U, T .prov(p)<∞

T .prov(p) · inst(T ) ≥
∑

T ′∈U

bind(p, T ′, T ) (1c)

∧

p∈I(U)

∧

T ∈U, T .prov(p)=∞

inst(T ) = 0 ⇒
∑

T ′∈U

bind(p, T ′, T ) = 0 (1d)

∧

p∈I(U)

∧

T ∈U, p/∈dom(T .prov)

∑

T ′∈U

bind(p, T ′, T ) = 0 (1e)
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Constraint 1a and 1b guarantee that there are enough bindings to satisfy all the
required interfaces, considering both strong and weak requirements. Symmetri-
cally, constraint 1c guarantees that the number of bindings is not greater than
the total available capacity, computed as the sum of the single capacities of each
provided interface. In case the capacity is unbounded (i.e., ∞), it is sufficient
to have at least one instance that activates such port to support any possible
requirement (see constraint 1d). Finally, constraint 1e guarantees that no bind-
ing is established connected to provided interfaces of microservice types that are
not deployed.

The second group of constraints deals with the number of instances of
microservices to be deployed.

inst(Tt) ≥ 1 (2a)
∧

p∈I(U)

∧

T ∈U,

p∈T .conf

∧

T ′∈U−{T },
p∈dom(T ′.prov)

inst(T ) > 0 ⇒ inst(T ′) = 0 (2b)

∧

p∈I(U)

∧

T ∈U, p∈T .conf ∧
p∈dom(T .prov)

inst(T ) ≤ 1 (2c)

∧

p∈I(U)

∧

T ∈U

∧

T ′∈U−{T }

bind(p, T , T ′) ≤ inst(T ) · inst(T ′) (2d)

∧

p∈I(U)

∧

T ∈U

bind(p, T , T ) ≤ inst(T ) · (inst(T ) − 1) (2e)

The first constraint 2a guarantees the presence of at least one instance of
the target microservice. Constraint 2b guarantees that no two instances of dif-
ferent types will be created if one activates a conflict on an interface provided
by the other one. Constraint 2c, consider the other case in which a type acti-
vates the same interface both in conflicting and provided modality: in this case,
at most one instance of such type can be created. Finally, the constraints 2d
and 2e guarantee that there are enough pairs of distinct instances to establish
all the necessary bindings. Two distinct constraints are used: the first one deals
with bindings between microservices of two different types, the second one with
bindings between microservices of the same type.

The last group of constraints deals with the distribution of microservice
instances over the available nodes O.

inst(T ) =
∑

o∈O

inst(T , o) (3a)

∧

r∈R

∧

o∈O

∑

T ∈U

inst(T , o) · T .res(r) ≤ o.res(r) (3b)

∧

o∈O

( ∑

T ∈U

inst(T , o) > 0
)

⇔ used(o) (3c)

min
∑

o∈O, used(o)

o.cost (3d)
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Constraint 3a simply formalizes the relationship among the variables inst(T )
and inst(T , o) (the total amount of all instances of a microservice type, should
correspond to the sum of the instances locally deployed on each node). Con-
straint 3b checks that each node has enough resources to satisfy the requirements
of all the hosted microservices. The last two constraints define the optimization
function used to minimize the total cost: constraint 3c introduces the boolean
variable used(o) which is true if and only if node o contains at least one microser-
vice instance; constraint 3d is the function to be minimized, i.e., the sum of the
costs of the used nodes.

These constraints, and the optimization function, are expected to be given
in input to a constraint/optimization solver. If a solution is not found it is not
possible to deploy the required microservice system; otherwise, the next phases
of the algorithm are executed to synthesize the optimal deployment plan.

Phase 2 The second phase consists of the generation of another set of con-
straints that, once solved, indicates the bindings to be established between any
pair of microservices to be deployed. More precisely, for each type T such that
inst(T ) > 0, we use sT

i , with 1 ≤ i ≤ inst(T ), to identify the microservices of
type T to be deployed. We also assume a function N that associates microser-
vices to available nodes O, which is compliant with the values inst(T , o) already
computed in Phase 1, i.e., given a type T and a node o, the number of sT

i , with
1 ≤ i ≤ inst(T ), such that N(sT

i ) = o coincides with inst(T , o).
In the constraints below we use the variables b(p, sT

i , sT ′

j ) (with i �= j, if
T = T ′): its value is 1 if there is a connection between the required inter-
face p of sT

i and the provided interface p of sT ′

j , 0 otherwise. We use n and
m to denote inst(T ) and inst(T ′), respectively, and an auxiliary total func-
tion limProv(T ′, p) that extends T ′.prov associating 0 to interfaces outside its
domain.

∧

T ∈U

∧

p∈I(U)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) ≤ limProv(T ′, p) (4a)

∧

T ∈U

∧

p∈dom(T .reqs)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) ≥ T .reqs(p) (4b)

∧

T ∈U

∧

p∈dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) ≥ T .reqw(p) (4c)

∧

T ∈U

∧

p/∈dom(T .reqs)∪dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) = 0 (4d)

Constraint 4a considers the provided interface capacities to fix upper bounds
to the bindings to be established, while constraints 4b and 4c fix lower bounds
based on the required interface capacities, considering both the weak (see 4b) and
the strong (see 4c) ones. Finally, constraint 4d indicates that it is not possible
to establish connections on interfaces that are not required.

A solution for these constraints exists because, as also shown in [13], the
constraints 1a . . . 2e (already solved during Phase 1) guarantee that the config-
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uration to be synthesized contains enough capacity on the provided interfaces
to satisfy all the required interfaces.

Phase 3 In this last phase we synthesize the deployment plan that, when
applied to the initial configuration C0, reaches a new configuration Ct with nodes,
microservices and bindings as computed in the first two phases of the algorithm.
Without loss of generality, in this decidability proof we show the existence of
a simple plan that first removes the elements in the initial configuration and
then deploys the target configuration from scratch. However, as also discussed
in Sect. 3, in practice it is possible to define more complex planning mechanisms
that re-use microservices already deployed.

Reaching an empty configuration is a trivial task since it is always possible
to perform in the initial configuration unbind actions for all the bindings con-
nected to weak required interfaces. Then, the microservices can be safely deleted.
Thanks to the well-formedness assumption (Definition 2) and using a topological
sort, it is possible to order the microservices to be removed without violating
any strong required interface (e.g., first remove the microservice not requiring
anything and repeat until all the microservices have been deleted).

The deployment of the target configuration follows a similar pattern. Given
the distribution of microservices over nodes (computed in the first phase) and the
corresponding bindings (computed in the second phase), the microservices can be
created by following a topological sort considering the microservices dependen-
cies following from the strong required interfaces. When all the microservices are
deployed on the corresponding nodes, the remaining bindings (on weak required
ports) may be added in any possible order. ��

Remark 1. The constraints generated during Phase 2 of the algorithm, in order
to establish the microservice bindings, are expected to be given in input to a
constraint/optimization solver. One can enrich such constraints with metrics
to optimize, e.g., the number of local bindings (i.e., give a preference to the
connections among microservices hosted in the same node):

min
∑

T ,T ′∈U,i∈1...inst(T ),j∈1...inst(T ′),p∈I(U),N(sT
i ) �=N(sT ′

j )

b(p, sT
i , sT ′

j )

Another example, used in the case study discussed in Sect. 3, is the following
metric that maximizes the number of bindings4:

max
∑

sT
i ,sT ′

j ,p∈I(U)

b(p, sT
i , sT ′

j )

From the complexity point of view, it is possible to show that the decision
versions of the optimization problem solved in Phase 1 is NP-complete, in Phase
4 We model a load balancer as a microservice having a weak required interface, with

arity 0, that can be provided by its back-end service. By adopting the above maxi-
mization metric, the synthesized configuration connects all possible services to such
required interface, thus allowing the load balancer to forward requests to all of them.
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Fig. 2. Microservice architecture for email processing.

2 is in NP, while the planning in Phase 3 is synthesized in polynomial time.
Unfortunately, due to the fact that numeric constraints can be represented in
log space, the output of Phase 2 requiring the enumeration of all the microser-
vices to deploy can be exponential in the size of the output of Phase 1 (indi-
cating only the total number of instances for each type). For this reason, the
optimal deployment problem is in NEXPTIME. However, we consider unfeasi-
ble in practice the deployment of an exponential number of microservices on one
node having limited resources. If at most a polynomial number of microservices
can be deployed on each node, we have that the optimal deployment problem
becomes an NP-optimization problem and its decision version is NP-complete.
See the companion technical report [8] for the formal proofs of complexity.

3 Application of the Technique to the Case-Study

Given the asymptotic complexity of our solution (NP under the assumption
of polynomial size of the target configuration) we have decided to evaluate its
applicability in practice by considering a real-world microservice architecture,
namely the email processing pipeline described in [22]. The considered archi-
tecture separates and routes the components found in an email (headers, links,
text, attachments) into distinct, parallel sub-pipelines with specific tasks (e.g.,
remove malicious attachments, tag the content of the mail). We report in Fig. 2
a depiction of the architecture. When an email reaches the Message Receiver it
is forwarded to the Message Parser, which sends each component into a specific
sub-pipeline. In the sub-pipelines, some microservices — e.g., Text Analyzer and
Attachment Analyzer — coordinate with other microservices — e.g., Sentiment
Analyzer and Virus Scanner — to process their inputs. Each microservice in the
architecture has a given resource consumption (expressed in terms of CPU and
memory). As expected, the processing of each email component entails a specific
load. Some microservices can handle large inputs, e.g., in the range of 40K simul-
taneous requests (e.g., Header Analyzer that processes short and uniform inputs).
Other microservices sustain heavier computations (e.g., Image Recognizer) and
can handle smaller simultaneous inputs, e.g., in the range of 10K requests.
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To model the system above, we use the Abstract Behavioral Specification
(ABS) language, a high-level object-oriented language that supports deploy-
ment modeling [31]. ABS is agnostic w.r.t. deployment platforms (Amazon AWS,
Microsoft Azure) and technologies (e.g., Docker or Kubernetes) and it offers
high-level deployment primitives for the creation of new deployment components
and the instantiation of objects inside them. Here, we use ABS deployment
components as computation nodes, ABS objects as microservice instances, and
ABS object references as bindings. Finally, to describe the requirements in our
model, we use ABS with SmartDepl [25], an extension that supports deployment
annotations. Strong required interfaces are modeled as class annotations indi-
cating mandatory parameters for the class constructor: such parameters contain
the references to the objects corresponding to the microservices providing the
strongly required interfaces. Weak required interfaces are expressed as anno-
tations concerning specific methods used to pass, to an already instantiated
object, the references to the objects providing the weakly required interfaces. We
define a class for each microservice type, plus one load balancer class for each
microservice type. A load balancer distributes requests over a set of instances
that can scale horizontally. Finally, we model nodes corresponding to Amazon
EC2 instances: c4 large, c4 xlarge, and c4 2xlarge (with the corresponding
provided resources and costs).

Microservice (max computational load) Initial (10K) +20K +50K +80K

MessageReceiver(∞) 1 - - -

MessageParser(40K) 1 - +1 -

HeaderAnalyzer(40K) 1 - +1 -

LinkAnalyzer(40K) 1 - +1 -

TextAnalyzer(15K) 1 +1 +2 +2

SentimentAnalyzer(15K) 1 +3 +4 +6

AttachmentsManager(30K) 1 +1 +2 +2

VirusScanner(13K) 1 +3 +4 +6

ImageAnalyzer(30K) 1 +1 +2 +2

NSFWDetector(13K) 1 +3 +4 +6

ImageRecognizer(13K) 1 +3 +4 +6

MessageAnalyzer(70K) 1 +1 +2 +2

In the table above, we report the result of our algorithm w.r.t. four incre-
mental deployments: the initial in column 2 and under incremental loads in
3–5. We also consider an availability of 40 nodes for each of the three node
types. In the first column of the Table, next to a microservice type, we report
its corresponding maximum computational load, i.e., the maximal number of
simultaneous requests that it can manage. As visible in columns 2–5, differ-
ent maximal computational loads imply different scaling factors w.r.t. a given
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number of simultaneous requests. In the initial configuration we consider 10K
simultaneous requests and we have one instance of each microservice type (and
of the corresponding load balancer). The other deployment configurations deal
with three scenarios of horizontal scaling, assuming three increasing increments
of inbound messages (20K, 50K, and 80K). In the three scaling scenarios, we
do not implement the planning algorithm described in Phase 3 of the proof of
Theorem 1. Contrarily, we take advantage of the presence of the load balancers
and, as described in Remark 1, we achieve a similar result with an optimiza-
tion function that maximizes the number of bindings of the load balancers. For
every scenario, we use SmartDepl [33] to generate the ABS code for the plan that
deploys an optimal configuration, setting a timeout of 30 min for the computa-
tion of every deployment scenario.5 The ABS code modeling the system and the
generated code are publicly available at [7]. A graphical representation of the
initial configuration is available in the companion technical report [8].

4 Related Work and Conclusion

In this work, we consider a fundamental building block of modern Cloud sys-
tems, microservices, and prove that the generation of a deployment plan for an
architecture of microservices is decidable and fully automatable; spanning from
the synthesis of the optimal configuration to the generation of the deployment
actions. To illustrate our technique, we model a real-world microservice archi-
tecture in the ABS [31] language and we compute a set of deployment plans.

The context of our work regards automating Cloud application deployment,
for which there exist many specification languages [5,11], reconfiguration proto-
cols [6,19], and system management tools [26,32,37,38]. Those tools support the
specification of deployment plans but they do not support the automatic distri-
bution of software instances over the available machines. The proposals closest to
ours are those by Feinerer [20] and by Fischer et al. [21]. Both proposals rely on
a solver to plan deployments. The first is based on the UML component model,
which includes conflicts and dependencies, but lacks the modeling of nodes. The
second does not support conflicts in the specification language. Neither proposals
support the computation of optimal deployments.

Three projects inspire our proposal: Aeolus [13,14], Zephyrus [1], and Conf-
Solve [28]. The Aeolus model paved the way to reason on deployment and recon-
figuration, proving some decidability results. Zephyrus is a configuration tool
based on Aeolus and it constitutes the first phase of our approach. ConfSolve is
a tool for the optimal allocation of virtual machines to servers and of applications
to virtual machines. Both tools do not synthesize deployment plans.

5 Here, 30 min are a reasonable timeout since we predict different system loads and
we compute in advance a different deployment plan for each of them. An interesting
future work would aim at shortening the computation to a few minutes (e.g., around
the average start-up time of a virtual machine in a public Cloud) to obtain on-the-fly
deployment plans tailored to unpredictable system loads.
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Regarding autoscaling, existing solutions [2,4,17,29] support the automatic
increase or decrease of the number of instances of a service/container, when some
conditions (e.g., CPU average load greater than 80%) are met. Our work is an
example of how we can go beyond single-component horizontal scaling policies
(as analyzed, e.g., in [9]).

As future work, we want to investigate local search approaches to speed-up
the solution of the optimization problems behind the computation of a deploy-
ment plan. Shorter computation times would open our approach to contexts
where it is unfeasible to compute plans ahead of time, e.g., due to unpredictable
loads.
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31. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

32. Kanies, L.: Puppet: next-generation configuration management. ;login: USENIX
Mag. 31(1), 19–25 (2006)

33. Mauro, J.: Smartdepl. https://github.com/jacopoMauro/abs deployer. Accessed
Jan 2019

https://doi.org/10.1007/978-3-642-33826-7_11
https://doi.org/10.1007/978-3-642-33826-7_11
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://doi.org/10.1007/978-3-319-67425-4_12
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
http://www.gecode.org
http://www.gecode.org
https://developers.google.com/optimization/
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-44482-6_8
https://www.ansible.com/
http://arxiv.org/abs/1812.03651
https://doi.org/10.1007/978-3-642-25271-6_8
https://github.com/jacopoMauro/abs_deployer


368 M. Bravetti et al.

34. Mauro, J., Zavattaro, G.: On the complexity of reconfiguration in systems with
legacy components. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9234, pp. 382–393. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48057-1 30

35. Mccombs, S.: Outages? Downtime? https://sethmccombs.github.io/work/2018/
12/03/Outages.html. Accessed Jan 2019

36. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

37. Opscode: Chef. https://www.chef.io/chef/. Accessed Jan 2019
38. Puppet Labs: Marionette collective. http://docs.puppetlabs.com/mcollective/.

Accessed Jan 2019
39. Woods, D.: On infrastructure at scale: a cascading failure of distributed systems.

https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-
failure-of-distributed-systems-7cff2a3cd2df. Accessed Jan 2019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-48057-1_30
https://doi.org/10.1007/978-3-662-48057-1_30
https://sethmccombs.github.io/work/2018/12/03/Outages.html
https://sethmccombs.github.io/work/2018/12/03/Outages.html
https://www.chef.io/chef/
http://docs.puppetlabs.com/mcollective/
https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
http://creativecommons.org/licenses/by/4.0/

	Optimal and Automated Deployment for Microservices
	1 Introduction
	2 The Microservice Optimal Deployment Problem
	3 Application of the Technique to the Case-Study
	4 Related Work and Conclusion
	References




