1,590 research outputs found

    Immunofluorescent localization of the Rab-GAP protein TBC1D4 (AS160) in mouse kidney

    Get PDF
    TBC1D4 (or AS160) was identified as a Rab-GTPase activating protein (Rab-GAP) that controls insulin-dependent trafficking of the glucose transporter GLUT4 in skeletal muscle cells and in adipocytes. Recent in vitro cell culture studies suggest that TBC1D4 may also regulate the intracellular trafficking of kidney proteins such as the vasopressin-dependent water channel AQP2, the aldosterone-regulated epithelial sodium channel ENaC, and the Na+-K+-ATPase. To study the possible role of TBC1D4 in the kidney in vivo, we raised a rabbit polyclonal antibody against TBC1D4 to be used for immunoblotting and immunohistochemical studies. In immunoblots on mouse kidney homogenates, the antibody recognizes specific bands at the expected size of 160kDa and at lower molecular weights, which are absent in kidneys of TBC1D4 deficient mice. Using a variety of nephron-segment-specific marker proteins, immunohistochemistry reveals TBC1D4 in the cytoplasm of the parietal epithelial cells of Bowman's capsule, the thin and thick limbs of Henle's loop, the distal convoluted tubule, the connecting tubule, and the collecting duct. In the latter, both principal as well as intercalated cells are TBC1D4-positive. Thus, with the exception of the proximal tubule, TBC1D4 is highly expressed along the nephron and the collecting duct, where it may interfere with the intracellular trafficking of many renal transport proteins including AQP2, ENaC and Na+-K+-ATPase. Hence, TBC1D4 may play an important role for the control of renal ion and water handling and hence for the control of extracellular fluid homeostasi

    Aldosterone deficiency adversely affects pregnancy outcome in mice

    Get PDF
    Circulating aldosterone levels are increased in human pregnancy. Inadequately low aldosterone levels as present in preeclampsia, a life-threatening disease for both mother and child, are discussed to be involved in its pathogenesis or severity. Moreover, inactivating polymorphisms in the aldosterone synthase gene have been detected in preeclamptic women. Here, we used aldosterone synthase-deficient (AS−/−) mice to test whether the absence of aldosterone is sufficient to impair pregnancy or even to cause preeclampsia. AS−/− and AS+/+ females were mated with AS+/+ and AS−/− males, respectively, always generating AS+/− offspring. With maternal aldosterone deficiency in AS−/− mice, systolic blood pressure was low before and further reduced during pregnancy with no increase in proteinuria. Yet, AS−/− had smaller litters due to loss of fetuses as indicated by a high number of necrotic placentas with massive lymphocyte infiltrations at gestational day 18. Surviving fetuses and their placentas from AS−/− females were smaller. High-salt diet before and during pregnancy increased systolic blood pressure only before pregnancy in both genotypes and abolished the difference in blood pressure during late pregnancy. Litter size from AS−/− was slightly improved and the differences in placental and fetal weights between AS+/+ and AS−/− mothers disappeared. Overall, an increased placental efficiency was observed in both groups paralleled by a normalization of elevated HIF1α levels in the AS−/− placentas. Our results demonstrate that aldosterone deficiency has profound adverse effects on placental function. High dietary salt intake improved placental function. In this animal model, aldosterone deficiency did not cause preeclampsi

    Tumor derived Microvesicles enhance cross-processing ability of clinical grade Dendritic Cells

    Get PDF
    Tumor cells release extracellular microvesicles (MVs) in the microenvironment to deliver biological signals to neighbouring cells as well as to cells in distant tissues. Tumor-derived MVs appear to play contradictory role promoting both immunosuppression and tumor growth and both evoking tumor specific immune response. Recent evidences indicate that tumor-derived MVs can positively impact Dendritic Cells (DCs) immunogenicity by reprogramming DC antigen processing machinery and intracellular signaling pathways, thus promoting anti-tumor response. DCs are considered pivot cells of the immune system due to their exclusive ability to coordinate the innate and acquired immune responses, cross-present exogenous antigens and prime naïve T cells. DCs are required for the induction and maintenance of long-lasting anti-tumor immunity and their exploitation has been extensively investigated for the design of anti-tumor vaccines. However, the clinical grade culture conditions that are required to generate DCs for therapeutic use can strongly affect their functions. Here, we investigated the immunomodulatory impact of MVs carrying the MUC1 tumor glycoantigen (MVsMUC1) as immunogen formulation on clinical grade DCs grown in X-VIVO 15 (X-DCs). Results indicated that X-DCs displayed reduced performance of the antigen processing machinery in term of diminished phagocytosis and acidification of the phagosomal compartment suggesting an altered immunogenicity of clinical grade DCs. Pulsing DCs with MVsMUC1 restored phagosomal alkalinization, triggering ROS increase. This was not observed when a soluble MUC1 protein was employed (rMUC1). Concurrently, MVsMUC1 internalization by X-DCs allowed MUC1 cross-processing. Most importantly, MVsMUC1 pulsed DCs activated IFNγ response mediated by MUC1 specific CD8+ T cells. These results strongly support the employment of tumor-derived MVs as immunogen platforms for the implementation of DC-based vaccine

    Imaging flow cytometry: a subtle and depth analysis of molecular mechanisms

    Get PDF
    The ImageStreamX is an innovative instrument that takes advantage of imaging flow cytometry, a novel technique that combines the speed, statistical power, and fluorescence sensitivity of flow cytometry with the functional insights of high resolution microscopy to give the most insightful cell analysis possible [1]. Among the wide range of applications, in our laboratory we study the human gingival fibroblasts (HGF) response to resin-based materials commonly used in dentistry, in terms of membrane molecule expression, intracellular signal transduction and cell death and apoptosis. Our experimental model is thought to resemble the oral cavity by cultivating the cells in the presence of saliva flow and microrganisms commonly present in vivo. As regards surface antigens expression, IDEAS image analysis software allows to virtually quantitate anything you can see using the software package’s numerous predefined fluorescence and morphologic parameters. Regarding the signal transduction, the IDEAS software package quantifies nuclear translocation events by automatically correlating the images of the transcription factor and the nucleus using the Similarity score. As of cell death and expression, Image StreamX can perform any standard flow cytometry assay, i.e. Annexin-V/PI one, with the added value of visual confirmation

    Histone acetyltransferase inhibitor CPTH6 preferentially targets lung cancer stem-like cells

    Get PDF
    Cancer stem cells (CSCs) play an important role in tumor initiation, progression, therapeutic failure and tumor relapse. In this study, we evaluated the efficacy of the thiazole derivative 3-methylcyclopentylidene-[4-(4’-chlorophenyl)thiazol-2-yl] hydrazone (CPTH6), a novel pCAF and Gcn5 histone acetyltransferase inhibitor, as a small molecule that preferentially targets lung cancer stem-like cells (LCSCs) derived from non-small cell lung cancer (NSCLC) patients. Notably, although CPTH6 inhibits the growth of both LCSC and NSCLC cell lines, LCSCs exhibit greater growth inhibition than established NSCLC cells. Growth inhibitory effect of CPTH6 in LCSC lines is primarily due to apoptosis induction. Of note, differentiated progeny of LCSC lines is more resistant to CPTH6 in terms of loss of cell viability and reduction of protein acetylation, when compared to their undifferentiated counterparts. Interestingly, in LCSC lines CPTH6 treatment is also associated with a reduction of stemness markers. By using different HAT inhibitors we provide clear evidence that inhibition of HAT confers a strong preferential inhibitory effect on cell viability of undifferentiated LCSC lines when compared to their differentiated progeny. In vivo, CPTH6 is able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors, as evidenced by marked reduction of tumor-initiating capacity in limiting dilution assays. Strikingly, the ability of CPTH6 to inhibit tubulin acetylation is also confirmed in vivo. Overall, our studies propose histone acetyltransferase inhibition as an attractive target for cancer therapy of NSCLC

    BCL-XL overexpression promotes tumor progression-associated properties article

    Get PDF
    By using human melanoma and glioblastoma cell lines and their derivative BCL-XL overexpressing clones, we investigated the role of BCL-XL in aggressive features of these two tumor histotypes. We found that in both models, BCL-XL overexpression increased in vitro cell migration and invasion and facilitated tumor cells to form de novo vasculogenic structures. Furthermore, BCL-XL overexpressing cells exhibited higher tumors sphere formation capacity and expressed higher levels of some stem cell markers, supporting the concept that BCL-XL plays essential roles in the maintenance of cancer stem cell phenotype. BCL-XL expression reduction by siRNA, the exposure to a BCL-XL-specific inhibitor and the use of a panel of human melanoma cell lines corroborated the evidence that BCL-XL regulates tumor progression-associated properties. Finally, the vascular markers and the vasculogenic mimicry were up-regulated in the BCL-XL overexpressing xenografts derived from both tumor histotypes. In conclusion, our work brings further support to the understanding of the malignant actions of BCL-XL and, in particular, to the concept that BCL-XL promotes stemness and contributes to the aggressiveness of both melanoma and glioblastoma

    Early Evaluation of Copper Radioisotope Production at ISOLPHARM

    Get PDF
    The ISOLPHARM (ISOL technique for radioPHARMaceuticals) project is dedicated to the development of high purity radiopharmaceuticals exploiting the radionuclides producible with the future Selective Production of Exotic Species (SPES) Isotope Separation On-Line (ISOL) facility at the Legnaro National Laboratories of the Italian National Institute for Nuclear Physics (INFN-LNL). At SPES, a proton beam (up to 70 MeV) extracted from a cyclotron will directly impinge a primary target, where the produced isotopes are released thanks to the high working temperatures (2000 \ub0C), ionized, extracted and accelerated, and finally, after mass separation, only the desired nuclei are collected on a secondary target, free from isotopic contaminants that decrease their specific activity. A case study for such project is the evaluation of the feasibility of the ISOL production of 64Cu and 67Cu using a zirconium germanide target, currently under development. The producible activities of 64Cu and 67Cu were calculated by means of the Monte Carlo code FLUKA, whereas dedicated off-line tests with stable beams were performed at LNL to evaluate the capability to ionize and recover isotopically pure copper

    Augmentation of Clozapine with Aripiprazole in Severe Psychotic Bipolar and Schizoaffective Disorders: A Pilot Study

    Get PDF
    AIM: To evaluate the efficacy and safety of the augmentation of clozapine with aripiprazole in patients with treatment-resistant schizoaffective and psychotic bipolar disorders in a retrospective manner. Pharmacodynamic and pharmacokinetic interactions between the two drugs were also investigated. PATIENTS: Three men and 4 women (median age 36 and 40 years, respectively) who had mean scores at BPRS and CGI-Severity of 59.1+/-12.0 and 5.4+/-0.5, respectively, were treated with clozapine (mean dose 292.9+/-220.7 mg/day). Patients received an adjunctive treatment with aripiprazole (mean dose 6.8 +/- 3.7 mg/day). Clozapine, norclozapine and aripiprazole plasma levels were measured by means of a high performance liquid chromatograpy with UV detection. RESULTS: Total scores at BPRS decreased significantly (from 59.1+/-12.0 to 51.1+/-15.6, p=0.007) after aripirazole augmentation. In particular, the factors "thought disorder" (from 10.4+/-4.4 to 9.0+/-4.5, p=.047) and "anergia" (from 10.0+/-2.7 to 8.0+/-2.4, p=.018) significantly improved. Concomitant administration of aripiprazole and clozapine did not result in an increase in side effects over the period of treatment. Dose-normalized plasma levels of both clozapine and norclozapine and the clozapine/norclozapine metabolic ratio in all patients did not vary as well. CONCLUSION: The augmentation of clozapine with aripirazole was safe and effective in severe psychotic schizoaffective and bipolar disorders which failed to respond to atypical antipsychotics. A possible pharmacokinetic interaction between clozapine and aripiprazole does not account for the improved clinical benefit obtained after aripiprazole augmentation

    Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Pemetrexed, a multi-target folate antagonist, has demonstrated efficacy in NSCLC histological subtypes characterized by low thymidylate synthase (TS) expression. Among many other potential targets, histone deacetylase inhibitors (HDACi) modulate TS expression, potentially sensitizing to the cytotoxic action of anti-cancer drugs that target the folate pathway, such as pemetrexed. Since high levels of TS have been linked to clinical resistance to pemetrexed in NSCLC, herein we investigated the molecular and functional effects of combined pemetrexed and ITF2357, a pan-HDACi currently in clinical trials as an anti-cancer agent.Results: In NSCLC cell lines, HDAC inhibition by ITF2357 induced histone and tubulin acetylation and downregulated TS expression at the mRNA and protein level. In combination experiments in vitro ITF2357 and pemetrexed demonstrated sequence-dependent synergistic growth-inhibitory effects, with the sequence pemetrexed followed by ITF2357 inducing a strikingly synergistic reduction in cell viability and induction of both apoptosis and autophagy in all cell line models tested, encompassing both adenocarcinoma and squamous cell carcinoma. Conversely, simultaneous administration of both drugs achieved frankly antagonistic effects, while the sequence of ITF2357 followed by pemetrexed had additive to slightly synergistic growth-inhibitory effects only in certain cell lines. Similarly, highly synergistic growth inhibition was also observed in patient-derived lung cancer stem cells (LCSC) exposed to pemetrexed followed by ITF2357. In terms of molecular mechanisms of interaction, the synergistic growth-inhibitory effects observed were only partially related to TS modulation by ITF2357, as genetic silencing of TS expression potentiated growth inhibition by either pemetrexed or ITF2357 and, to a lesser extent, by their sequential combination. Genetic and pharmacological approaches provided an interesting link between the autophagic and apoptotic pathways, and showed that sequential pemetrexed/ITF2357 causes a toxic form of autophagy with consequent activation of a caspase-dependent apoptotic program. In vivo experiments in NSCLC xenografts confirmed that sequential pemetrexed/ITF2357 is feasible and results in increased inhibition of tumor growth and increased mice survival.Conclusions: Overall, these data provide a strong rationale for the clinical development of sequential schedules employing pemetrexed followed by HDACi in NSCLC
    • …
    corecore