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Abstract

By using human melanoma and glioblastoma cell lines and their derivative BCL-X, overexpressing clones, we
investigated the role of BCL-X| in aggressive features of these two tumor histotypes. We found that in both models,
BCL-X, overexpression increased in vitro cell migration and invasion and facilitated tumor cells to form de novo
vasculogenic structures. Furthermore, BCL-X| overexpressing cells exhibited higher tumors sphere formation capacity
and expressed higher levels of some stem cell markers, supporting the concept that BCL-X| plays essential roles in the
maintenance of cancer stem cell phenotype. BCL-X; expression reduction by siRNA, the exposure to a BCL-X-specific
inhibitor and the use of a panel of human melanoma cell lines corroborated the evidence that BCL-X| regulates tumor
progression-associated properties. Finally, the vascular markers and the vasculogenic mimicry were up-regulated in the
BCL-X, overexpressing xenografts derived from both tumor histotypes. In conclusion, our work brings further support
to the understanding of the malignant actions of BCL-X, and, in particular, to the concept that BCL-X; promotes

stemness and contributes to the aggressiveness of both melanoma and glioblastoma.

Introduction

A growing body of results supports the evidence that
BCL-X;, and more in general BCL-2 family members, are
not only key regulators of apoptosis, but also actively
participate in the regulation of other vital cellular func-
tions. As a consequence, limiting the oncogenic properties
of the anti-apoptotic proteins of this family to their ability
to oppose apoptosis is an old concept. In particular, sev-
eral pieces of evidence indicate that BCL-X; elicits new
functions, which are genetically distinct from its effect on
apoptosis'™. In particular, a pivotal role for BCL-X;
in vitro and in vivo invasion of malignant glioma®, col-
orectal carcinoma®, and breast carcinoma® ° has been
described. Moreover, gain-of-function studies in models
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of pancreatic cancer, demonstrated accelerated tumor
formation and growth, while genetic ablation of BCL-X,
attenuates invasiveness without affecting apoptosis or
tumor  growth®®, BCL-X; ability to induce
epithelial-mesenchymal transition has been also descri-
bed together with the relevance of BCL-X nuclear loca-
lization in this phenomenon®’. In fact, several reports
indicate that BCL-X; and other antiapoptotic proteins
also reside in the nuclear membrane, even if they are
primarily localized in the outer mitochondrial membrane,
and they may even function within the nucleus, binding
nuclear proteins and modulating the transactivity of sev-
eral transcription factors*!'. However, BCL-X; over-
expression is not always sufficient for inducing its effects
on tumor progression, and additional treatments may be
necessary in some cases’.

We previously identified a novel function of BCL-Xy in
promoting tumor angiogenesis through the nuclear factor
kappa B (NF-kB)/interleukin 8 (CXCLS8) axis in tumor cell
lines with a different origin, including glioblastoma and
melanoma'™'*.  The ability of BCL-X; protein to
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Fig. 1 BCL-X, overexpression promotes in vitro cell migration and invasion. a Western blotting analysis of BCL-X, BCL-2, and MCL-1 expression
in melanoma control (Mneo), glioblastoma control (AN8), melanoma overexpressing BCL-X; (MXL90) and glioblastoma overexpressing BCL-X,.
(AXL74) cells. Reported images are representative of three independent Western blotting with similar results. HSP70/72 and B-actin expression was
evaluated to confirm equivalent transfer and loading. Quantification and representative images of in vitro cell (b) migration and (c) invasion of Mneo,
AN8, MXL90 and AXL74 cells. b, ¢ Data were expressed as average + standard deviation. *p < 0.05 after applying Student’s t-test

modulate the angiogenic potential of cancer cells has been
confirmed by using antisense oligonucleotides'>'°. Our
results are consistent with studies showing that both BCL-
Xy and BCL-2 are key regulators of the angiogenic
crosstalk between tumor and neovascular endothelial
cells'”'®,

Recent advances also highlighted a role for BCL-X in
cancer stem cells (CSC) biology of different tumors: sur-
vival of tumors including lung and colon carcinoma has
been shown to depend primarily on BCL-X>'*%.
Moreover, the inhibition of BCL-X; protein expression
and the increased responsiveness of patient-derived glio-
blastoma and colon stem-like cells have been reported
after treatment with BCL-2 family inhibitors®>*'. BCL-X
protein activation is also a central molecular mechanism
by which senescent cells acquire increased resistance to
apoptosis, and the block of BCL-Xy specifically induces
apoptosis of senescent cells both in vitro and in vivo®*.

BCL-X| is frequently overexpressed, in comparison with
normal tissue counterparts, in a significant subset of
common cancers, including melanoma and glioblastoma.
In particular, BCL-X; expression increases during mela-
noma progression from primary to metastatic mela-
noma”’, Moreover, one of the primary means by which
melanoma cells evade apoptosis induced by different sti-
munli, is by up-regulation of anti-apoptotic proteins,
including BCL-X;. Furthermore, the application of BCL-
X1/BCL-2 inhibitors induces apoptosis in melanoma cells
at different clinical stages including melanoma-initiating
cells®*°. Members of the BCL-2 family are crucial reg-
ulators of cell death also in glioblastomas and the anti-
apoptotic family members, including BCL-X;, are often
overexpressed in this neoplasia®*®. Moreover, BCL-X;.
levels are related to the sensitivity of glioblastoma cells to
anti-neoplastic treatments>"%’.

In this study, we investigated the functional role of BCL-
X1 overexpression in aggressive features of melanoma and
glioblastoma. We provide evidence that in both tumor
histotypes BCL-X; modulation regulates in vitro cell
migration and invasion, and the ability of tumor cells to
form de novo vasculogenic structures. Furthermore, BCL-
Xy, overexpressing cells exhibited higher CSC phenotype.
Finally, even if no difference was observed in in vivo
tumor growth, the expression of the vascular markers and
the vasculogenic mimicry (VM) were up-regulated in the
BCL-X| overexpressing xenografts.
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Results
BCL-X, overexpression increases in vitro cell migration and
invasion and promotes capillary-like structure formation

To evaluate whether BCL-X| overexpression promotes
tumor progression-associated properties, we used control
and BCL-X; overexpressing clones generated from
human melanoma M14 (Mneo, MXL90) and ADF glio-
blastoma (ANS, AXL74) cells® (Fig. 1a). We performed
Western blot analyses to evaluate the expression of other
pro-survival proteins, such as BCL-2 and MCL-1, in these
clones. As reported in Fig. la, while BCL-X; over-
expressing clones show superimposable expression level
of MCL-1 protein when compared to control clones, a
reduced expression of BCL-2 protein was observed in
both melanoma and glioblastoma models. We next con-
firmed the anti-apoptotic function of BCL-X;. As repor-
ted in Supplementary Fig. S1, BCL-X[ overexpression
protects from staurosporine (STR)-induced and cisplatin
(DDP)-induced apoptosis in both models. During in vitro
cell proliferation, activation of apoptosis can occur due to
depletion of nutrients or survival factors from the culture
media. Thus, we also analyzed if apoptosis occurs in
control transfectants during the in vitro growth and if
BCL-X overexpression protects from eventual-induced
apoptosis. As reported in Supplementary Fig. S2, no dif-
ferences between control and BCL-X; overexpressing
clones were observed in terms of apoptosis activation. In
particular, the Annexin V/PI staining, performed from 6
to 120 h after plating the cells, demonstrated a percentage
of apoptotic cells lower than 9% both in control and BCL-
Xy, overexpressing cells. Similarly, PARP cleavage, a clas-
sical apoptotic marker, was not evidenced either in con-
trol or BCL-X; overexpressing cells at the different time
points analyzed. PARP cleavage was observed only in M14
and ADF control cells exposed to DDP (20 pg/ml,
24 h), which was used as positive control of apoptosis
induction.

Next, to ascertain whether BCL-X; overexpression
affects cell migratory and/or invasive ability, we per-
formed in vitro transwell migration and invasion assays.
The number of invaded and migrated cells was sig-
nificantly higher in cells overexpressing BCL-X; when
compared to control cells, thus indicating that BCL-X,
overexpression leads to an increase of the migratory and
invasive capacity of both melanoma and glioblastoma cells
(Fig. 1b, ¢). We confirmed the role of BCL-X; in
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Fig. 2 BCL-X, downregulation reduces in vitro cell migration and invasion. a Western blotting analysis of BCL-X; expression in melanoma cells
stably overexpressing BCL-X; (MXL90) transfected with siRNA oligonucleotides against BCL-X, (si- BCL-X,) or scramble (si-Ctrl) target sequences.
HSP70/72 expression was evaluated to confirm equivalent transfer and loading. Reported images are representative of three independent Western
blotting with similar results. Quantification and representative images of in vitro cell migration and invasion of (b) MXL90 cells transfected with si-
BCL-X, or si-Ctrl, (€) MXL90 cells exposed to 20 uM WEHI-539, (d) melanoma control (Mneo) and BCL-X; overexpressing (MXL90) cells in presence of
50 uM pan caspase inhibitor z-VAD-FMK (zVAD) or DMSO (Ctrl). b—d Values are expressed as a percentage of migrated/invaded cells with respect to
control. Data were expressed as average + standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001 after applying Student’s t-test

regulating melanoma cell migration and invasion in RNA
interfering (siRNA) experiments aimed at lowering BCL-
Xy levels in a representative BCL-X; overexpressing
melanoma clone (Fig. 2a). As depicted in Fig. 2b, BCL-Xp
downregulation decreased both migration and invasion of
about 60%, when compared to cells transfected with
control siRNA. Treatment of melanoma BCL-X; over-
expressing clone with the BCL-X; selective inhibitor
WEHI-539%® corroborated the experiments with BCL-X,
siRNA knockdown: a significant reduction of both
migration and invasion was observed after treatment with
WEHI-539 (Fig. 2c). Similar results, in terms of reduction
of both migration and invasion properties, were observed
when a glioblastoma clone overexpressing BCL-X; pro-
tein was treated with WEHI-539 (Supplementary Fig. S3).

To exclude that the increased migration and invasion
observed in BCL-X, transfectants might be related to
protection from apoptotic program eventually activated
during the assays, we also evaluated migration and inva-
sion in the presence of z-VAD-FMK (zVAD). This irre-
versible pan-caspase inhibitor used at the dose of 50 pM,
demonstrated to block apoptosis induced by DDP (Sup-
plementary Fig. S1). As reported in Fig. 2d, the addition of
zVAD did not affect the ability of cells to migrate and
invade, thus demonstrating that apoptosis was not
induced in control clone during the assay. These results
also evidenced that the ability of BCL-X; to increase
migration and invasion was not related to protection from
apoptosis activated during the assays.

We further investigated the potential role of BCL-X; on
VM, the formation of vascular channels seeding mela-
noma or glioblastoma cells in serum-free medium onto
the gelled basement matrix extracts (BME). VM forma-
tion is an alternative way to provide sufficient blood
perfusion for highly malignant solid tumors®*’. As
reported in Fig. 3, BCL-Xy overexpressing clones from
both melanoma (Fig. 3a) and glioblastoma (Fig. 3d),
demonstrated an enhanced VM, evaluated in terms of
both tube length and number of intersections, when
compared to the respective corresponding control clones.
Downregulation of BCL-X; in MXL90 cells by specific
siRNA (Fig. 3b) or by BCL-Xp inhibitor WEHI-539
(Fig. 3c), resulted in serious impairment of VM in BCL-
X1 overexpressing melanoma cells, when compared to
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control cells. A significant reduction of VM was also
observed in glioma BCL-X; overexpressing cells treated
with BCL-X; inhibitor WEHI-539 (Supplementary
Fig. S3).

BCL-X, overexpression promotes CSC phenotype

CSC have been demonstrated to transdifferentiate into
different phenotypes and to form vessel-like networks,
‘mimicking’ the pattern of embryonic vascular net-
works®*2, In addition, they have been shown to be asso-
ciated with tumor growth, local invasion, and distant
metastasis, and to drive response to therapy>. Thus, to
analyze the possible involvement of BCL-X; in promoting
stemness in our models, we firstly evaluated in vitro tumor
sphere formation by plating tumor cells in the permissive
medium. We evidenced that BCL-X; overexpression pro-
moted 3D spheroid formation both in melanoma (Fig. 4a)
and glioblastoma (Fig. 4d) models. At the end of estab-
lished experimental period (10 days) both melanoma
control and BCL-X; overexpressing cells showed more
than 80% of viability (Fig. S4), thus we can exclude acti-
vation of apoptosis in control clone during the 10 days of
assay. We can also exclude that in BCL-X;, overexpressing
clones the observed stemness phenotype is due to BCL-X,
canonical anti-apoptotic function. This evidence is con-
firmed by analysis of 3D spheroid formation in presence of
zVAD. In fact, as reported in Fig. 4a, zZVAD did not affect
the ability to form 3D spheroids of both control and BCL-
Xy, overexpressing cells. In line with these results, mRNA
expression of apoptosis-regulating proteins, such as BCL-
Xr, BCL-2, BAX, PUMA, NOXA, and BIM was not sig-
nificantly modulated in cells grown as 2D and 3D spheroids
(Supplementary Fig. S5).

The role of BCL-X}, in promoting 3D spheroid forma-
tion was confirmed in siRNA experiments. In particular,
downregulation of BCL-X; by specific siRNA (Fig. S4)
resulted in the reduced 3D spheroid formation in mela-
noma model when compared to cells transfected with
control siRNA (Fig. 4b). The reduced 3D spheroid for-
mation was also observed in both melanoma (Fig. 4c) and
glioma (Fig. S3) BCL-X. overexpressing clones after
treatment with WEHI-539.

Notably, a similar percentage of cell viability was found
in control cells, silenced or WEHI-539 treated melanoma
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Fig. 3 BCL-X. modulates capillary-like structure formation. Quantification (tube length and number of intersection point) and representative
images of capillary-like structure formation in (a) melanoma control (Mneo) and BCL-X; overexpressing (MXL90) cells, (b) MXL90 transfected with
siRNA oligonucleotides against BCL-X, (si-BCL-X) or scramble (si-Ctrl) target sequences, (c) MXL90 treated with 20 uM WEHI-539, (d) glioblastoma
control (AN8) and BCL-X; overexpressing (AXL74) cells. Cells were plated on basement matrix extracts. Experiments have been performed under
normoxic condition. Data were expressed as average + standard deviation. *p < 0.05 after applying Student's t-test
|\

BCL-X. overexpressing clone (Fig. S4), thus demonstrat-
ing that the observed reduction of 3D spheroid formation
after genetic or pharmacological inhibition of BCL-X; was
not due to apoptosis induction.

Next, we also evaluated the modulation of several CSC
markers in terms of mRNA expression, including HIF-1a,
NANOG, OCT4, BMI1, and SOX2 in cells grown under
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adherent (2D, Fig. 4e) or spheroid (3D, Fig. 4f) conditions.
An enhancement in the expression of different stem cell
markers was observed in BCL-X; transfectants from both
models grown as 3D spheroids when compared to control
clones cultured in the same condition. Interestingly, when
cells were grown in 2D, the expression levels of OCT4,
BMI1, SOX2 for melanoma cells and of SOX2 for
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Fig. 4 BCL-X, modulates cancer stem cell phenotype. Quantification and representative images of tumor sphere-forming capacity by (a)
melanoma control (Mneo) and BCL-X| overexpressing (MXL90) cells treated with 50 uM zVAD or DMSO (Ctrl), and (d) glioblastoma control (AN8), and
BCL-X, overexpressing (AXL74) cells. (b, ¢) Quantification of tumor sphere-forming capacity by MXL90 cells (b) transfected with siRNA
oligonucleotides against BCL-X| (si-BCL-X|) or scramble (si-Ctrl) target sequences, or ¢ treated with 20 uM WEHI-539. Data shown represent the fold of
spheroids formation over control. (e, f) Quantitative real-time polymerase chain reaction analysis of HIF-1a, NANOG, OCT4, BMI1, and SOX2 mRNA in
Mneo, MXL90, AN8, and AXL74 cells grown in (e) adherent condition (2D) or (f) as tumor spheroids (3D). Values are expressed as means of ratio +
standard deviation, where ‘ratio” was calculated considering BCL-X overexpressing cells vs. control cells. a—f *p < 0.05 after applying Student’s t-test

glioblastoma were modulated by BCL-X; overexpression
(Fig. 4e). Taken togheter, these results indicate that BCL-
Xi, increases CSC features.

We also evaluated in vitro cell invasion/migration and
stemness properties of a panel of both melanoma and
glioma cell lines with variable levels of endogenous BCL-
X protein. Western blot analysis indicates that BCL-Xp
protein was detectable in all the cell lines analyzed, even
though to a different extent (Fig. 5a, c). Furthermore, we
performed an exploratory linear regression analysis, cor-
relating BCL-X; protein level with the number of
migrated and invaded cells across all cell lines repre-
senting each tumor histotype. As evidenced in Fig. 5b, d
and Supplementary Fig. S6, a positive correlation trend
was found in all cases (R2 from 0.4 to 0.8), but the test was
significant only for the melanoma cell lines (p <0.05)
(Fig. 5b). In particular, M20 cells expressing a higher level
of BCL-X protein show higher invasive and migratory
ability when compared to JR8 and SAN cells expressing
lower levels of BCL-X, protein. The missing 5-6% con-
fidence from the correlation test in glioblastoma could be
recovered with more samples.

Interestingly, M20 showed also tumors sphere forma-
tion ability similar to that observed in BCL-X; over-
expressing clone (Fig. 5e).

To investigate if BCL-X; ability to promote tumors
sphere formation is common to other anti-apoptotic
members, we also performed experiments by using M14
melanoma control and BCL-2 overexpressing clones®®. As
reported in Supplementary Fig. S7, BCL-2 overexpression
promoted the 3D spheroid formation. Moreover, as
observed for BCL-X; overexpressing cells, the addition of
zVAD did not affect the tumor sphere forming ability of
these cells. Pharmacological or genetic targeting of BCL-2
by the specific inhibitor ABT-199° or a specific siRNA,
respectively, caused a significant decrement of tumors
sphere formation ability (Supplementary Fig. S7).
Although the addition of zZVAD to ABT-199 treated cells
was sufficient to recovery from apoptosis induction, the
presence of zZVAD did not restore the sphere forming
ability of BCL-2/6 (Supplementary Fig. S7). This result
indicates that the reduced sphere formation cannot be
due to apoptosis.

Official journal of the Cell Death Differentiation Association

BCL-X, overexpression affects HIF-1, VEGF, and MMP2
expression in melanoma cells

To further explore the molecular pathway involved in
BCL-X| -mediated tumor aggressiveness, we next focused
our attention on HIF-1/VEGF axis, a key pathway
involved in melanoma and glioblastoma vascularization
and aggressiveness>"**~**, Although no effect of BCL-X|,
overexpression on HIF-1/VEGF pathway was observed
under the normoxic condition, interestingly we found that
under hypoxia, BCL-X; overexpressing melanoma cells
showed a higher level of the o subunit of transcription
factor HIF-1 respect to control transfectants grown under
the same condition (Supplementary Fig. S8). Notably,
BCL-X; was able to increase HIF-1a expression also in
other conditions strictly dependent on oxygen availability,
as high cell density, a condition creating a local pericel-
lular hypoxic microenvironment (data not shown). In
agreement with these results, BCL-X; overexpressing
melanoma cells produced in their conditioned media
compared to that from control clone, significantly higher
level of VEGF protein, a HIF-1-dependent pro-angiogenic
factor. Moreover, when BCL-X; transfectants were com-
pared to control ones, exposure to hypoxia also induced
an increase in VEGF promoter and HIF-1 transcriptional
activity (Supplementary Fig. S8).

We also demonstrated increased VEGF secretion and
HIF-1a expression in low passage number of control and
BCL-X stably transfected clones obtained from JR8
human melanoma parental cells, thus excluding that
during long-term culture of tumor cells there was selec-
tion for specific subpopulations of cells (Supplementary
Fig. S8). It is well known that metalloproteinases (MMP)
are regulated by HIF-1 and that are involved in the reg-
ulation of the extracellular matrix degradation, required
for cell migration, invasion, and VM. Thus, we analyzed
MMP2 activation in melanoma clones under normoxia
and hypoxia. As depicted in Supplementary Fig. S8, an
enhancement of MMP2 expression was observed after
BCL-Xy overexpression under normoxic conditions.
MMP?2 expression was also further increased when BCL-
X, overexpressing cells were exposed to hypoxia. Sur-
prisingly, after exposure to hypoxia, no significant differ-
ences were observed after BCL-Xp overexpression in
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.

Fig. 5 BCL-X, protein expression correlates with invasion and migration in a panel of melanoma cell lines. Western blotting analysis BCL-X,.
protein expression in (@) melanoma and (c) glioblastoma cell lines. Reported images are representative of two independent experiments with similar
results. 3-actin expression was evaluated to confirm equivalent transfer and loading. (b, d) Correlation among BCL-X, evaluated via Western blotting
analysis and invasion/migration properties in a panel of melanoma (b) and glioblastoma (d) cell lines. Densitometric values of normalized BCL-X,
protein level were plotted against the number of migrated/invaded cells. Arrows indicate cell lines with highest (M20) and lowest (JR8, SAN)
migration/invasion properties. JR8 and SAN cells showed superimposable values. Results were considered to be statistically significant if *p < 0.05.
e Tumor sphere-forming capacity evaluated in Mneo, MXL90 and M20 cells. Data were expressed as average =+ standard deviation

glioblastoma model, in terms of both VEGF protein
secretion and HIF-la protein stabilization (data not
shown).

Vascularization and VM are enhanced in BCL-X,
overexpressing tumors

To corroborate our in vitro results, we established
xenograft tumor models using melanoma or glioblastoma
cells. As reported in Fig. 6a, b, BCL-X|, expressing clones
did not show a significant induction of tumor growth,
when compared to control ones. Histological analysis of
tumor xenografts section revealed that the overexpression
of BCL-X}, was stable during in vivo growth of melanoma
and glioblastoma (Fig. 6¢, d). More importantly, tumor
xenografts sections from control tumors had a reduced
number of CD31-positive (indicative of endothelial ves-
sels) and Periodic acid-Schiff (PAS)-positive vessels
(indicative of tumor vessels) when compared to tumor
sections from BCL-X;, overexpressing xenografts. Con-
sistent with the in vitro observations, these data showed
that BCL-X; enhances tumor angiogenesis in xenograft
tumor models of both melanoma and glioblastoma.

Discussion

Our current investigation provides additional, com-
plementary data to previous ones, from our and other
groups, in regard to the emergent function for BCL-Xy in
tumor aggressiveness">*. In particular, we demonstrated
that exogenous BCL-X} overexpression plays a powerful
role in controlling multiple malignant properties of
human melanoma and glioblastoma, including migration,
invasion, and tumor cell plasticity. Our results also evi-
dence BCL-X; involvement in melanoma and glio-
blastoma stemness. Moreover, experiments performed
with specific siRNA or with a specific BCL-X, inhibitor,
corroborated a direct effect of BCL-X; on the observed
phenotypes. The use of a panel of melanoma cell lines
showing variable expression level of endogenous BCL-X},
protein corroborated the observations made in the engi-
neered cell lines indicating clinical and pathophysiological
relevance to cancer that express a high level of BCL-X,
including melanoma.

Our observations support the view that BCL-X; works
not only as essential cues for cell fate determination, but it
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also regulates pathways involved in the progression of
melanoma and glioblastoma, as recently reported for
pancreatic neuroendocrine and breast tumors®. The
concomitant increase in invasion, migration, VM and
CSC-like stemness pathways after BCL-X| overexpression
observed in our models, suggests that BCL-X; protein
may be an important in vivo environmental cue pro-
moting melanoma and glioblastoma aggressiveness and
CSC maintenance. BCL-X, ability to induce these phe-
nomena, together with the evidence of a correlation
between invasive/migratory ability and the levels of
endogenous BCL-X;, expression, emphasizes its relevance
in regulating tumor aggressiveness.

Studies carried out with low passage number of BCL-X;,
overexpressing clones excluded that during long-term
culture there was a selection for a specific subpopulation
of cells.

We also provide additional results to our previous ones,
regarding the role of BCL-2 in tumor invasion, migration,
and metastatization®**”***! by demonstrating BCL-2
ability to promote CSC phenotype in melanoma. In
agreement with previously reported data showing that
breast, colon, lung, and leukemia CSC are especially vul-
nerable to BCL-2 family inhibitors®, our findings high-
light that inhibition of anti-apoptotic BCL-2 family
members could represent a promising approach to target
chemotherapy-resistant CSC and plasticity of glio-
blastoma and melanoma.

We also found that BCL-X; overexpression modulates
HIF-1 and its target genes in melanoma models. While
some anti-apoptotic proteins, including BCL-X;, have
been identified as HIF-1 target genes*>™**, this is the first
evidence demonstrating HIF-1 modulation by BCL-X;, in
a melanoma model. Similarly, we previously showed that
under hypoxia BCL-2 promotes HIF-1-mediated VEGF
expression in melanoma and breast carcinoma*!**.

Overall, our results demonstrate that in addition to their
effect on the apoptotic pathway, both BCL-2 and BCL-Xg
share the ability to regulate new functions. We have
previously demonstrated that both BCL-2 and BCL-X|
proteins''™'>*" positively regulate invasion and migration
and production of angiogenic factors in melanoma mod-
els. In this paper, we report that the increased invasion
and migration induced by BCL-X], is not related to other
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(PAS) staining. Data were expressed as average + standard deviation

Fig. 6 Vascularization is enhanced in BCL-X, overexpressing tumors. Tumor growth evaluation after injection in nude mice of (a) melanoma
control (Mneo) and BCL-X; overexpressing (MXL90) cells, and (b) glioblastoma control (AN8) and BCL-X overexpressing (AXL42) cells.
Immunohistochemical analyses of BCL-X| expression and vascularization in tumors obtained (c) 34 days after injection of melanoma cells, and

(d) 23 days after injection of glioblastoma cells. Vascularization was evaluated by detecting CD31-positive endothelial cells and by Periodic acid-Schiff

anti-apoptotic proteins, such as BCL-2 or MCL-1. In fact,
forced BCL-X expression does not determine a mod-
ulation of MCL-1 protein, and even downregulation of
BCL-2 protein in our melanoma models.

Our results demonstrating BCL-X ability to modulate
the expression of a transcription factor, such as HIF-1 are
in agreement with previous papers demonstrating BCL-
X ability to exert transcriptional and epigenetic changes”.
Experiments are ongoing to investigate the BCL-Xg
localization at the nucleus in melanoma cells over-
expressing BCL-X; and the mechanism of BCL-Xj-
mediated activation of HIF-1/VEGF axis.

We previously demonstrated that BCL-X| also pro-
motes tumor angiogenesis through the NF-kB/CXCL8
axis both in melanoma and glioblastoma models'*™**,
Since the increased level of CXCLS8 in breast CSC have
been shown to contribute to breast cancer aggressiveness
by promoting VM®, it is reasonable that CXCL8 might
contribute to BCL-X; increased VM formation, invasive-
ness, and stemness of both tumor types. Moreover, the
high VM observed after BCL-X;. overexpression might be
due to enrichment in CSC population, which participate
in VM formation by interacting with the vascular niche to
shape the proper tumor microenvironment and by dif-
ferentiating into endothelial cell-like tumor cells to con-
stitute VM structures®”>>*”. A better understanding of
BCL-X;, and more in general of BCL-2 family members,
will provide an insight into the molecular mechanism of
tumor progression, how conventional chemotherapy
selectively kills cancer cells, and why some cancers are
more chemosensitive than others. Our results also
underline the impact of targeting BCL-2 family members
to kill heterogeneous tumors and to eliminate CSC-
resistant population.

Further exploitation of our understanding of the BCL-2
family promises to offer improved predictive biomarkers
for oncologists and improved therapies for patients with
cancer.

Materials and methods
Cell lines and reagents

Human melanoma (JR8, SAN, M20, PLF2, ME1007,
M14, A375SM, SBCL1) and glioblastoma (ADF, LI, T98G,
U251, U373, U373MQG) cell lines were cultured as pre-
viously reported'>'3, Stable control (Mneo) and BCL-X;,
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overexpressing (MXL90) clones previously generated
from M14 human melanoma cells, stable control (J8neo)
and BCL-X overexpressing (J8XL8 and J8XL10) clones
from JR8 human melanoma, and control (AN8) and BCL-
Xp overexpressing (AXL74) clones previously generated
from ADF human glioblastoma cells'® were used. These
cells were cultured in the presence of 800 pg/ml geneticin
(Euroclone, Milan, IT) in RPMI medium (Euroclone)
containing 10% inactivated fetal bovine serum (FBS)
(Hyclone, Thermoscientific, South Logan, UT), 2 mM L-
glutamine (Euroclone), and antibiotics. Stable control
(puro) and BCL-2 overexpressing (BCL-2/6) clones pre-
viously generated from M14 cells were cultured in 10%
FBS RPMI medium in the presence of 1 mg/ml puromycin
(puro, Sigma—Aldrich, St. Louis, MO)>*%, Pooled siRNA
oligonucleotides against BCL-X;, or BCL-2 or scramble
(si-Ctrl) target sequences were purchased from Dharma-
con RNA Technologies (siGENOME SMARTpool,
Lafayette, CO, USA). For siRNA transfection, cells were
seeded and after 24 h transfected with 50 nM pooled oli-
gonucleotides mixture by using jetPRIME (Polyplus
Transfection, Sébastien Brant Illkirch FRANCE) following
the manufacturer’s protocol. After 24 h, the medium was
changed and BCL-X protein expression was assessed 48
h after silencing by Western blot analysis.

Flow cytometric analysis

Flow cytometric analysis (BD Accuri C6, BD bios-
ciences) was performed to evaluate cell cycle distribution
by propidium iodide (PI) staining and to quantify apop-
totic cells by AnnexinV-FITC/PI staining as already
described®®. Cell viability of spheroids was assessed by
AnnexinV-FITC staining.

Western blotting analysis

Antibodies directed to BCL-Xg;, (#sc-634, Santa Cruz
Biotechnology, CA, USA), HIF-1a (#610959, BD Bios-
ciences, San Diego, CA, USA), HIF-1p (#611079, BD
Biosciences), MMP2 (#sc-10736, Santa Cruz Biotechnol-
ogy), cleaved PARP (#AB3565, Millipore, Billerica, MA,
USA), MCL-1 (#sc-12756, Santa Cruz Biotechnology)
were used. HSP70/72 (#HSPO1, Calbiochem, San Diego,
CA, USA), p-actin (#A1978, Sigma), and HSP90 (#610419
BD Biosciences) antibodies were employed to confirm
equivalent transfer and loading. Antibody binding was
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visualized by enhanced chemiluminescence method
(Pierce ECL Plus Western Blotting Substrate, Thermo-
scientific) according to manufacturer’s specification. The
densitometric evaluation was performed using Image ]
software and normalized with relative controls depending
on the analysis.

ELISA

The level of secreted VEGF by cells cultured for 18 h
under normoxia (21% oxygen) or hypoxia (less than 1%
oxygen) was assayed by ELISA kit according to the
manufacturer’s instructions (R&D Systems, Minneapolis,
MN, USA). VEGF in the supernatants was normalized to
the number of adherent cells.

Luciferase assay

To study VEGF promoter and HIF-1 transcriptional
activity, 7 x 10%cells were seeded in triplicate in 24-well
plates; 24 h later cells were transfected with a total of 1 pg
of DNA/well using JetPRime reagent (Polyplus transfec-
tion, Illkirch, France) according to the manufacturer’s
protocol. Three different constructs were used: (1) the
VEGF1511 fragment of the VEGF promoter construct
including 1175 bp of the promoter from the start site of
transcription and 336 bp of untranslated mRNA; (2) the
385 bp deletion fragment (VEGF385), containing a similar
binding site to that of the HIF-1, was generated from 1511
bp fragment by restriction digestion; (3) the HIF-1 plasmid
consisting of a vector expressing luciferase under the
control of 4x hypoxia responsive element. To normalize
for transfection efficiency, the PEQ-176 plasmid (0.5 pg)
was included in the transfections. Samples were collected
18 h after the induction of hypoxia and analyzed for luci-
ferase and p-galactosidase activity. Relative luciferase
expression was determined as a ratio of p-galactosidase
activity. Results were reported as fold of normalized luci-
ferase activity over the negative control (empty vector).

Cell migration and invasion assays

For cell migration assay, 1 x 10° cells were seeded in
serum-free media into the upper chamber of Transwell
(Corning, Costar, New York, USA) containing 8 um pore
polycarbonate membrane. The lower well contained
medium with 10% FBS. After 8 h of incubation at 37 °C,
cells remaining on the top side of the membrane were
removed using a cotton swab, and migrating cells were
fixed, stained (Differential Quick Stain Kit, Dade Behring,
Marburg, Germany), photographed and counted.

For cell invasion assay, 8 x 10* cells were seeded in
serum-free media into the upper chamber of CultreCoat’
24-Well Medium BME Cell Invasion Inserts (Trevigen,
Gaithersburg, MD, USA) having a polycarbonate mem-
brane with 8 um pores coated with a thin basement
membrane. After 8h of incubation at 37°C, cells
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remaining on the top side of the membrane were
removed, and invading cells fixed, stained, photographed,
and counted. Fifty micromolar of zZVAD (Sigma-Aldrich)
was dissolved in DMSO (Sigma-Aldrich) and added to
cells seeded in serum-free media into the upper chamber
for both migration and invasion assay. Cell migration and
invasion were also evaluated after pharmacological inhi-
bition of BCL-X : cells were treated with 20 uM of WEHI-
539 (MedChemExpress, New Jersey, United States), a
selective inhibitor of BCL-X;, for 24 h, trypsinized and
subjected to cell migration and invasion assays.

Tumor sphere-forming capacity

1 x 10 cells were plated in six-well ultralow attachment
surface plate and cultured as previously described®®. After
10 days, spheres were photographed and counted. In the
case of silencing experiments, cells were plated after 48 h
of silencing and tumor sphere-forming capacity was
evaluated after 10 days. The capacity to form tumor
sphere was also evaluated after 4 days in presence of
WEHI-539 (20 pM), zZVAD (50 tM), or ABT-199 (1 pM), a
specific BCL-2 inhibitor (Apexbio, Houston, USA).

Quantitative real-time polymerase chain reaction (qRT-PCR)
analysis

Total RNA was extracted from in vitro cultured cells
using a Qiagen RNeasy Mini kit (Qiagen, Redwood City,
CA, USA) according to the manifacturer’s instructions.
Reverse transcription was performed using RevertAid
Reverse Transcriptase (Thermoscientific). qRT-PCR was
performed with a Gene-Amp 7900 sequence detection
system (Applied Biosystems, Foster City, CA, USA), using
the SYBR green dye detection method. The mRNA levels
were normalized using glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). Primers used to analyze each
gene were: HIF-1la (Fw:CCAGTTAGGTTCCTTCGAT-
CAGT, Rv:TTTGAGGACTTGCGCTTTCA); BMI1 (Fw:
ATGTGTGTGCTTTGTGAG, Rv:AGTGGTCTGGTCT
TGTGAAC); SOX2 (Fw:CACCCCTGGCATGGCTCTT,
Rv:GAGCTGGCCTCGGACTTGA); NANOG (Fw:AAT
ACCTCAGCCTCCAGCAGATG, Rv:TGCGTCACACC
ATTGCTATTCTTC); OCT4 (Fw:TCCCATGCATTCA
AACTGAGGT, Rv:CCCAAAAACCCTGGCACAA);
GAPDH (Fw:TCCTGAGCTGAACGGGAAG, Rv:GGAG
GAGTGGGTGTCGCTGT); PUMA (Fw: AAGTCAG-
GACTTGCAGGCGCG, Rv: TGGGTCCCAGTCAGTGT
GTGT); NOXA (Fw: CGCTGACGACGTCCCAGCG
TTT, Rv: CGAAGACGGCGTTATGGGAGC); BIM (Fw:
CAGAGATATCGATCGCCCAAG, Rv: CAGAGATATG
GATCGCCCAAG); BCI-2 (Fw:CTGCACCTGACGCCCT
TCACC, Rv: CACATGACCCCACCGAACTCAAAGA);
BAX (Fw: TCCCGGCTCTCTGATCCCCG, Rv: GGCT
AGGGGAACGCTATATGC); BCL-Xp (Fw: TTGGATG
GCCACTTACCTGAAT, Rv: AACCAGCGGTTGAAGC
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GTT). Student’s t-test was used and results were con-
sidered to be statistically significant if p < 0.05 (*).

Analysis of capillary-like structures (CLS)

Two hundred and fifty microliters of BME (12.7 mg/ml,
Trevigen) were dropped onto each well of a 24-well plate
and were allowed to solidify for 1 h at 37 °C in humidified
5% CO, incubator. 2 x 10° cells were seeded in serum-
free medium onto the gelled BME and incubated at 37 °C
for 18 h. Then, CLS formation was photographed using
light microscopy and quantified by evaluating the tube
length and counting the number of cell junctions in
10 sets of images for each clone. Each clone was analyzed
in duplicate in three different experiments using image
analysis program (Image J v.1.34s; http://rsb.info.nih.gov/
ij/). CLS was also evaluated after treatment of cells with
20 pM of WEHI-539 for 24 h or after BCL-X silencing.

Tumor growth and immunohistochemical (IHC) analysis

Cells in exponential growth phase were harvested from
the culture, washed, and resuspended in PBS and injected
subcutaneously (s.c.) for melanoma cells or intramuscu-
larly (i.m.) for glioblastoma cells, into nude mice at 5 x
10° viable cells/mice. Tumor weight was monitored and
calculated as previously reported®’. Female CD-1 nude
(nu/nu) mice, 6-8 weeks old and 22-24 g in body weight
were purchased from Charles River Laboratories (Calco,
Italy). All procedures involving animals and their care
were authorized and certified by D.lgs 26/2014 (816/2015-
PR del 11/08/2015) of the Italian Minister of Health. 34 or
23 days after melanoma or glioblastoma cell injection,
respectively, tumors were removed, placed in 10% buf-
fered formalin for 24-h, dehydrated, and embedded in
paraffin. For each tumor, three different 5pum paraffin
sections were analyzed and examined by light microscopy.
BCL-X; expression was evaluated using BCL-X; mono-
clonal antibody (clone H-5, Santa Cruz Biotechnology).
Immunoreactions were revealed by Bond Polymer Refine
Detection, a biotin-free, polymeric horseradish peroxidase
(HRP)-linker antibody conjugate system on an automated
autostainer (Bond™ Max, Leica Biosystem, Milan, Italy).
The THC results for BCL-X; were recorded as positive
when tumor cells exhibited a strong homogeneous cyto-
plasmic immunoreaction, whereas cases with faint stain-
ing were regarded as negative (200x and 400x
magnification). Vascularization was evaluated by detect-
ing CD31-positive cells (clone SZ31, Dianova GmbH,
Warburg, Hamburg, Germany) and by PAS staining (PAS
Kit, Sigma-Aldrich) according to the manufacturers.
Sections were scanned at 20x magnification.

Statistical analysis

Unless differently specified, for in vitro data at least
three independent experiments in triplicate have been
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performed, and expressed as an average =+ standard
deviation. Linear regressions and correlation plots were
computed via R scripting (specifically via Im and cor.test
functions); results were considered to be statistically sig-
nificant if p < 0.05. For in vivo experiments, each experi-
mental group included eight mice. Two different
experiments were performed. To determine the differ-
ences between tumor weights of different groups, Stu-
dent’s t-test for unpaired data (two-sided) was used.
Results were considered to be statistically significant if
p <0.05 after applying Student’s ¢-test.
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