6,583 research outputs found
In-situ Investigation of the Early Stage of TiO2 epitaxy on (001) SrTiO3
We report on a systematic study of the growth of epitaxial TiO2 films
deposited by pulsed laser deposition on Ti-terminated (001) SrTiO3 single
crystals. By using in-situ reflection high energy electron diffraction, low
energy electron diffraction, x-ray photoemission spectroscopy and scanning
probe microscopy, we show that the stabilization of the anatase (001) phase is
preceded by the growth of a pseudomorphic Sr-Ti-O intermediate layer, with a
thickness between 2 and 4 nm. The data demonstrate that the formation of this
phase is related to the activation of long range Sr migration from the
substrate to the film. The role of interface Gibbs energy minimization, as a
driving force for Sr diffusion, is discussed. Our results enrich the phase
diagram of the Sr-Ti-O system under epitaxial strain opening the roudeficient
SrTiO phase.Comment: 8 pages, 7 figure
Pedaling time variability is increased in dropped riding position
Variability of cycle-to-cycle duration during a pedaling task is probably related to the rhythmic control of the lower limb muscles as in gait. Although walking variability has been extensively studied for its clinical and physiological implications, pedaling variability has received little attention. The present contribution determines the variability of the cycling time during a 10-min exercise as a function of upper body position. Nine healthy males were required to pedal on cycle-ergometer at a self-selected speed for 10 min in two different upper body positions [hands on upper handlebars (UP) or lower handlebars (DP)]. Time domain measures of cycling variability [total standard deviation (SDtot), mean standard deviation cycle-to-cycle intervals over
100 cycles (SD100), standard deviation of the average cycle-to-cycle intervals over 100 cycles (SDA100)] were measured. Moreover, the same time domain measures were also calculated for heart rate in order to discriminate possible involvements of autonomic regulation. Finally, the structure of the cycle variations has been analyzed in the framework of deterministic chaos calculating the maximum Lyapunov exponents. Significant increases in cycle-to-cycle variability were found for SDtot, SD100 in DP compared to UP, whereas cardiac parameters and other cycling parameters were not changed in the two positions. Moreover, the maximum Lyapunov exponent was significantly more negative in DP. The results suggest that small perturbations of upper body position can influence the control of cycling rhythmicity by increasing the variability in a dissipative deterministic regimen
Role of interband scattering in neutron irradiated MgB thin films by Scanning Tunneling Spectroscopy measurements
A series of MgB thin films systematically disordered by neutron
irradiation have been studied by Scanning Tunneling Spectroscopy. The c-axis
orientation of the films allowed a reliable determination of local density of
state of the band. With increasing disorder, the conductance peak moves
towards higher voltages and becomes lower and broader, indicating a monotonic
increase of the gap and of the broadening parameter. These results are
discussed in the frame of two-band superconductivity.Comment: The text will be submitted in Latex format, and the corresponding pdf
file should take 6 pages. There are 5 figures (eps files submitted) and 1
tabl
High quality MgB2 thin films in-situ grown by dc magnetron sputtering
Thin films of the recently discovered magnesium diboride (MgB2) intermetalic
superconducting compound have been grown using a magnetron sputtering
deposition technique followed by in-situ annealing at 830 C. High quality films
were obtained on both sapphire and MgO substrates. The best films showed
maximum Tc = 35 K (onset), a transition width of 0.5 K, a residual resistivity
ratio up to 1.6, a low temperature critical current density Jc > 1 MA/cm2 and
anisotropic critical field with gamma = 2.5 close to the values obtained for
single crystals. The preparation technique can be easily scaled to produce
large area in-situ films.Comment: 7 pages, 4 figure
Anatomy and kinematic evolution of an ancient passive margin involved into an orogenic wedge (Western Southern Alps, Varese area, Italy and Switzerland)
We make use of own geological mapping, interpretations of seismic reflection profiles and deep geophysical data to build a lithospheric-scale cross-section across the European Western Southern Alps (Varese area) and to model a progressive restoration from the end of Mesozoic rifting to present-day. Early phases of Alpine orogeny were characterized by Europe-directed thrusting, whereas post-Oligocene shortening led to basement-involving crustal accretion accompanied by backfolding, and consistent with the kinematics of the adjoining Ivrea Zone. Wedging was favored by a significant component of reactivation of the inherited Adriatic rifted margin. Our results also suggest that, during the collisional and post-collisional tectonics, lithosphere dynamics drove diachronically the onset of tectonic phases (i.e., wedging and slab retreat), from east to west, across the Western Southern Alps
Electric field effect and superconducting–insulating transition in ‘123’ cuprate superconductors
The physics of high critical temperature superconductors (HTS) remains a fascinating but undisclosed issue in condensed matter. One of the most interesting topics is the transition from the insulating phase of the parent compound, having long range antiferromagnetic order, to the superconducting phase. A method to investigate in detail the superconducting to insulating (SIT) transition in HTS is to control the doping of the CuO(2) planes in a fine way. Here, by using the electric field effect on thin Nd(1)Ba(2)Cu(3)O(7) films, we present a study of the HTS phase diagram close to the SIT with unprecedented detail. By virtue of these data, we will show that doping of holes in samples located at the boundary separating the superconducting and insulating regions produces changes in the transport characteristic consistent with an electronic phase separation scenario. Some consequences of these data are the failure of standard 2D quantum scaling theory and the possible coexistence of superconducting and weakly insulating phases in this region of the phase diagram. A continuous transition between the two competing phases as a function of doping place evident constraints on the mechanism of superconductivity
Shoes and Insoles: The Influence on Motor Tasks Related to Walking Gait Variability and Stability
The rhythmic control of the lower limb muscles influences the cycle-to-cycle variability during a walking task. The benefits of insoles, commonly used to improve the walking gait, have been little studied. Therefore, the aim of this study was to assess the walking gait variability and stability on different walking conditions (without shoes, WTS, with shoes, WS, with shoes and insoles, WSI) related to brain activity. Twelve participants randomly (WTS/WS/WSI) walked on a treadmill at 4 km/h for 10 min. Kinematic analysis (i.e., footstep and gait variability), brain activation (beta wave signal), rating of perceived exertion (RPE, CR-10 scale), and time domain measures of walking variability were assessed. The maximum Lyapunov exponent (LyE) on the stride cycle period\u2019s datasets was also calculated. Stride length and cycle calculated for all walking conditions were 61.59 \ub1 2.53/63.38 \ub1 1.43/64.09 \ub1 2.40 cm and 1.11 \ub1 0.03/1.14 \ub1 0.03/1.15 \ub1 0.04 s (F1,10 = 4.941/p = 0.01, F1,10 = 4.938/p = 0.012) for WTS, WS, WSI, respectively. Beta wave (F1,10 = 564.201/p = 0.0001) was higher in WTS compared to WS and WSI. Analysis of variance\u2019s (ANOVA) LyE showed a F1,10 = 3.209/p = 0.056, while post hoc analysis showed a significant effect between WS and WSI with p = 0.023, and nonsignificant effects between WTS and WS/WSI (p = 0.070/0.607), respectively. Small perturbations of the foot can influence the control of gait rhythmicity by increasing the variability in a dissipative deterministic regimen
- …