743 research outputs found
Hydrodynamic Interactions in Protein Folding
We incorporate hydrodynamic interactions (HI) in a coarse-grained and
structure-based model of proteins by employing the Rotne-Prager hydrodynamic
tensor. We study several small proteins and demonstrate that HI facilitate
folding. We also study HIV-1 protease and show that HI make the flap closing
dynamics faster. The HI are found to affect time correlation functions in the
vicinity of the native state even though they have no impact on same time
characteristics of the structure fluctuations around the native state
Direct contact and authoritarianism as moderators between extended contact and reduced prejudice: Lower threat and greater trust as mediators
Using a representative sample of Dutch adults (N = 1238), we investigated the moderating influence of direct contact and authoritarianism on the potential of extended contact to reduce prejudice. As expected, direct contact and authoritarianism moderated the effect of extended contact on prejudice. Moreover, the third-order moderation effect was also significant, revealing that extended contact has the strongest effect among high authoritarians with low levels of direct contact. We identified trust and perceived threat as the mediating processes underlying these moderation effects. The present study thus attests to the theoretical and practical relevance of reducing prejudice via extended contact. The discussion focuses on the role of extended contact in relation to direct contact and authoritarianism as well as on the importance of trust in intergroup contexts
Concentration Dependen Sedimentation of Collidal Rods
In the first part of this paper, an approximate theory is developed for the
leading order concentration dependence of the sedimentation coefficient for
rod-like colloids/polymers/macromolecules. To first order in volume fraction
of rods, the sedimentation coefficient is written as .
For large aspect ratio L/D (L is the rod length, D it's thickness) is
found to very like . This
theoretical prediction is compared to experimental results. In the second part,
experiments on {\it fd}-virus are described, both in the isotropic and nematic
phase. First order in concentration results for this very long and thin
(semi-flexible) rod are in agreement with the above theoretical prediction.
Sedimentation profiles for the nematic phase show two sedimentation fronts.
This result indicates that the nematic phase becomes unstable with the respect
to isotropic phase during sedimentation.Comment: Submitted to J. Chem. Phys. See related webpage
http://www.elsie.brandeis.ed
Crystallization Kinetics of Colloidal Spheres under Stationary Shear Flow
A systematic experimental study of dispersions of charged colloidal spheres
is presented on the effect of steady shear flow on nucleation and
crystal-growth rates. In addition, the non-equilibrium phase diagram as far as
the melting line is concerned is measured. Shear flow is found to strongly
affect induction times, crystal growth rates and the location of the melting
line. The main findings are that (i) the crystal growth rate for a given
concentration exhibits a maximum as a function of the shear rate, (ii) contrary
to the monotonous increase of the growth rate with increasing concentration in
the absence of flow, a maximum of the crystal growth rate as a function of
concentration is observed for sheared systems, and (iii) the induction time for
a given concentration exhibits a maximum as a function of the shear rate. These
findings will be partly explained on a qualitative level.Comment: 17 pages, 10 figures, accepted in Langmui
Aggregation of self-propelled colloidal rods near confining walls
Non-equilibrium collective behavior of self-propelled colloidal rods in a
confining channel is studied using Brownian dynamics simulations and dynamical
density functional theory. We observe an aggregation process in which rods
self-organize into transiently jammed clusters at the channel walls. In the
early stage of the process, fast-growing hedgehog-like clusters are formed
which are largely immobile. At later stages, most of these clusters dissolve
and mobilize into nematized aggregates sliding past the walls.Comment: 5 pages, 4 figure
Translational and rotational friction on a colloidal rod near a wall
We present particulate simulation results for translational and rotational
friction components of a shish-kebab model of a colloidal rod with aspect ratio
(length over diameter) in the presence of a planar hard wall.
Hydrodynamic interactions between rod and wall cause an overall enhancement of
the friction tensor components. We find that the friction enhancements to
reasonable approximation scale inversely linear with the closest distance
between the rod surface and the wall, for in the range between and
. The dependence of the wall-induced friction on the angle between
the long axis of the rod and the normal to the wall is studied and fitted with
simple polynomials in .Comment: 8 pages, 8 figure
Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses
We investigate the kinetics of phase separation for a mixture of rodlike
viruses (fd) and polymer (dextran), which effectively constitutes a system of
attractive rods. This dispersion is quenched from a flow-induced fully nematic
state into the region where the nematic and the isotropic phase coexist. We
show experimental evidence that the kinetic pathway depends on the overall
concentration. When the quench is made at high concentrations, the system is
meta-stable and we observe typical nucleation-and-growth. For quenches at low
concentration the system is unstable and the system undergoes a spinodal
decomposition. At intermediate concentrations we see the transition between
both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as
symposium paper for the 6th Liquid Matter Conference in Utrech
Colloidal glass transition: Beyond mode-coupling theory
A new theory for dynamics of concentrated colloidal suspensions and the
colloidal glass transition is proposed. The starting point is the memory
function representation of the density correlation function. The memory
function can be expressed in terms of a time-dependent pair-density correlation
function. An exact, formal equation of motion for this function is derived and
a factorization approximation is applied to its evolution operator. In this way
a closed set of equations for the density correlation function and the memory
function is obtained. The theory predicts an ergodicity breaking transition
similar to that predicted by the mode-coupling theory, but at a higher density.Comment: to be published in PR
The probability distribution of a trapped Brownian particle in plane shear flows
We investigate the statistical properties of an over-damped Brownian particle
that is trapped by a harmonic potential and simultaneously exposed to a linear
shear flow or to a plane Poiseuille flow. Its probability distribution is
determined via the corresponding Smoluchowski equation, which is solved
analytically for a linear shear flow. In the case of a plane Poiseuille flow,
analytical approximations for the distribution are obtained by a perturbation
analysis and they are substantiated by numerical results. There is a good
agreement between the two approaches for a wide range of parameters.Comment: 5 pages, 4 figur
Note: Scale-free center-of-mass displacement correlations in polymer films without topological constraints and momentum conservation
We present here computational work on the center-of-mass displacements in
thin polymer films of finite width without topological constraints and without
momentum conservation obtained using a well-known lattice Monte Carlo algorithm
with chain lengths ranging up to N=8192. Computing directly the center-of-mass
displacement correlation function C_N(t) allows to make manifest the existence
of scale-free colored forces acting on a reference chain. As suggested by the
scaling arguments put forward in a recent work on three-dimensional melts, we
obtain a negative algebraic decay C_N(t) \sim -1/(Nt) for times t << T_N with
T_N being the chain relaxation time. This implies a logarithmic correction to
the related center-of-mass mean square-displacement h_N(t) as has been checked
directly
- âŠ