913 research outputs found

    Gradient and vorticity banding

    Get PDF
    "Banded structures" of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as "gradient banding" or "vorticity banding," respectively. The main features of gradient banding can be understood on the basis of a relatively simple constitutive equation. This minimal model for gradient banding will be discussed in some detail, and its predictions are shown to explain many of the experimentally observed features. The minimal model assumes a decrease of the shear stress of the homogeneously sheared system with increasing shear rate within a certain shear-rate interval. The possible microscopic origin of the severe shear-thinning behaviour that is necessary for the resulting nonmonotonic flow curves is discussed for a few particular systems. Deviations between experimental observations and predictions by the minimal model are due to obvious simplifications within the scope of the minimal model. The most serious simplifications are the neglect of concentration dependence of the shear stress (or on other degrees of freedom) and of the elastic contributions to the stress, normal stresses, and the possibility of shear-induced phase transitions. The consequences of coupling of stress and concentration will be analyzed in some detail. In contrast to predictions of the minimal model, when coupling to concentration is important, a flow instability can occur that does not require strong shear thinning. Gradient banding is sometimes also observed in glassy- and gel-like systems, as well as in shear-thickening systems. Possible mechanisms that could be at the origin of gradient-band formation in such systems are discussed. Gradient banding can also occur in strongly entangled polymeric systems. Banding in these systems is discussed on the basis of computer simulations. Vorticity banding is less well understood and less extensively investigated experimentally as compared to gradient banding. Possible scenarios that are at the origin of vorticity banding will be discussed. Among other systems, the observed vorticity-banding transition in rod-like colloids is discussed in some detail. It is argued, on the basis of experimental observations for these colloidal systems, that the vorticity-banding instability for such colloidal suspensions is probably related to an elastic instability, reminiscent of the Weissenberg effect in polymeric systems. This mechanism might explain vorticity banding in discontinuously shear-thickening systems and could be at work in other vorticity-banding systems as well. This overview does not include time-dependent phenomena like oscillations and chaotic behaviour

    International cooperation for higher education in aquaculture and fisheries science - a European point of view

    Get PDF
    Since the signing of the Bologna Declaration in 1997, European (higher) education has gone through probably the most thorough and swift reform in its history. The process aims at transparency and mutual recognition leading to unlimited mobility across the European Communities’ universities for students and teachers. The Lisbon declaration emphasized the role of top-quality education as a prerequisite in developing Europe as the most competitive and dynamic knowledge-based economy in the world. In the process towards these Lisbon objectives, much effort is invested in initiatives for lifelong learning (LL) as lifelong learning is considered to be a cornerstone in achieving competitiveness and employability. Lifelong learning contributes to social inclusion, active citizenship and personal development. In response to the diversity and increasing specialisation of the European fisheries and aquaculture sector, a range of higher and vocational education programmes has developed responding to this diversity. AquaTNET, a European Commission funded network, promotes harmonization of education programmes in the European Union and serves as a representative and advisor for the aquaculture and fisheries education providers.Internationalization of education is high on the agenda of the European Commission. The European Commission’s ERASMUS Mundus programme features various activities that promote mobility of students and staff, and develops partnerships between European and non-European education providers. This programme eventually improves the appeal of the European education. Besides the centralised initiatives, numerous valuable cooperation projects on education exist between European and non-European states, institutes and other parties such as NGO’s

    Hydrodynamic Interactions in Protein Folding

    Full text link
    We incorporate hydrodynamic interactions (HI) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HI facilitate folding. We also study HIV-1 protease and show that HI make the flap closing dynamics faster. The HI are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state

    Direct contact and authoritarianism as moderators between extended contact and reduced prejudice: Lower threat and greater trust as mediators

    Get PDF
    Using a representative sample of Dutch adults (N = 1238), we investigated the moderating influence of direct contact and authoritarianism on the potential of extended contact to reduce prejudice. As expected, direct contact and authoritarianism moderated the effect of extended contact on prejudice. Moreover, the third-order moderation effect was also significant, revealing that extended contact has the strongest effect among high authoritarians with low levels of direct contact. We identified trust and perceived threat as the mediating processes underlying these moderation effects. The present study thus attests to the theoretical and practical relevance of reducing prejudice via extended contact. The discussion focuses on the role of extended contact in relation to direct contact and authoritarianism as well as on the importance of trust in intergroup contexts

    Translational and rotational friction on a colloidal rod near a wall

    Get PDF
    We present particulate simulation results for translational and rotational friction components of a shish-kebab model of a colloidal rod with aspect ratio (length over diameter) L/D=10L/D = 10 in the presence of a planar hard wall. Hydrodynamic interactions between rod and wall cause an overall enhancement of the friction tensor components. We find that the friction enhancements to reasonable approximation scale inversely linear with the closest distance dd between the rod surface and the wall, for dd in the range between D/8D/8 and LL. The dependence of the wall-induced friction on the angle θ\theta between the long axis of the rod and the normal to the wall is studied and fitted with simple polynomials in cosθ\cos \theta.Comment: 8 pages, 8 figure

    Crystallization Kinetics of Colloidal Spheres under Stationary Shear Flow

    Get PDF
    A systematic experimental study of dispersions of charged colloidal spheres is presented on the effect of steady shear flow on nucleation and crystal-growth rates. In addition, the non-equilibrium phase diagram as far as the melting line is concerned is measured. Shear flow is found to strongly affect induction times, crystal growth rates and the location of the melting line. The main findings are that (i) the crystal growth rate for a given concentration exhibits a maximum as a function of the shear rate, (ii) contrary to the monotonous increase of the growth rate with increasing concentration in the absence of flow, a maximum of the crystal growth rate as a function of concentration is observed for sheared systems, and (iii) the induction time for a given concentration exhibits a maximum as a function of the shear rate. These findings will be partly explained on a qualitative level.Comment: 17 pages, 10 figures, accepted in Langmui

    Concentration Dependen Sedimentation of Collidal Rods

    Full text link
    In the first part of this paper, an approximate theory is developed for the leading order concentration dependence of the sedimentation coefficient for rod-like colloids/polymers/macromolecules. To first order in volume fraction ϕ\phi of rods, the sedimentation coefficient is written as 1+αϕ1+\alpha \phi. For large aspect ratio L/D (L is the rod length, D it's thickness) α\alpha is found to very like (LD)2/log(LD)\propto (\frac{L}{D})^2/\log (\frac{L}{D}). This theoretical prediction is compared to experimental results. In the second part, experiments on {\it fd}-virus are described, both in the isotropic and nematic phase. First order in concentration results for this very long and thin (semi-flexible) rod are in agreement with the above theoretical prediction. Sedimentation profiles for the nematic phase show two sedimentation fronts. This result indicates that the nematic phase becomes unstable with the respect to isotropic phase during sedimentation.Comment: Submitted to J. Chem. Phys. See related webpage http://www.elsie.brandeis.ed

    Aggregation of self-propelled colloidal rods near confining walls

    Full text link
    Non-equilibrium collective behavior of self-propelled colloidal rods in a confining channel is studied using Brownian dynamics simulations and dynamical density functional theory. We observe an aggregation process in which rods self-organize into transiently jammed clusters at the channel walls. In the early stage of the process, fast-growing hedgehog-like clusters are formed which are largely immobile. At later stages, most of these clusters dissolve and mobilize into nematized aggregates sliding past the walls.Comment: 5 pages, 4 figure

    Note: Scale-free center-of-mass displacement correlations in polymer films without topological constraints and momentum conservation

    Full text link
    We present here computational work on the center-of-mass displacements in thin polymer films of finite width without topological constraints and without momentum conservation obtained using a well-known lattice Monte Carlo algorithm with chain lengths ranging up to N=8192. Computing directly the center-of-mass displacement correlation function C_N(t) allows to make manifest the existence of scale-free colored forces acting on a reference chain. As suggested by the scaling arguments put forward in a recent work on three-dimensional melts, we obtain a negative algebraic decay C_N(t) \sim -1/(Nt) for times t << T_N with T_N being the chain relaxation time. This implies a logarithmic correction to the related center-of-mass mean square-displacement h_N(t) as has been checked directly

    Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses

    Get PDF
    We investigate the kinetics of phase separation for a mixture of rodlike viruses (fd) and polymer (dextran), which effectively constitutes a system of attractive rods. This dispersion is quenched from a flow-induced fully nematic state into the region where the nematic and the isotropic phase coexist. We show experimental evidence that the kinetic pathway depends on the overall concentration. When the quench is made at high concentrations, the system is meta-stable and we observe typical nucleation-and-growth. For quenches at low concentration the system is unstable and the system undergoes a spinodal decomposition. At intermediate concentrations we see the transition between both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as symposium paper for the 6th Liquid Matter Conference in Utrech
    corecore