3,393 research outputs found
A reddening-free method to estimate the Ni mass of Type Ia supernovae
The increase in the number of Type Ia supernovae (SNe\,Ia) has demonstrated
that the population shows larger diversity than has been assumed in the past.
The reasons (e.g. parent population, explosion mechanism) for this diversity
remain largely unknown. We have investigated a sample of SNe\,Ia near-infrared
light curves and have correlated the phase of the second maximum with the
bolometric peak luminosity. The peak bolometric luminosity is related to the
time of the second maximum (relative to the {\it B} light curve maximum) as
follows : .
Ni masses can be derived from the peak luminosity based on Arnett's
rule, which states that the luminosity at maximum is equal to instantaneous
energy generated by the nickel decay. We check this assumption against recent
radiative-transfer calculations of Chandrasekhar-mass delayed detonation models
and find this assumption is valid to within 10\% in recent radiative-transfer
calculations of Chandrasekhar-mass delayed detonation models.
The vs. relation is applied to a sample of 40 additional
SNe\,Ia with significant reddening ( 0.1 mag) and a reddening-free
bolometric luminosity function of SNe~Ia is established. The method is tested
with the Ni mass measurement from the direct observation of
rays in the heavily absorbed SN 2014J and found to be fully
consistent.
Super-Chandrasekhar-mass explosions, in particular SN\,2007if, do not follow
the relations between peak luminosity and second IR maximum. This may point to
an additional energy source contributing at maximum light.
The luminosity function of SNe\,Ia is constructed and is shown to be
asymmetric with a tail of low-luminosity objects and a rather sharp
high-luminosity cutoff, although it might be influenced by selection effects.Comment: 9 pages, 3 figures, Accepted to A&
On Reflection of Shock Waves from Boundary Layers
Measurements of the reflection characteristics of shock waves from a flat surface with a laminar and turbulent boundary layer are presented. The investigations were carried out at Mach numbers from about 1.3 to 1.5 and a Reynolds number of 0.9 x 10^4.
THe difference in the shock-wave interaction with laminar and turbulent boundary layers, first found in transonic flow is confirmed and ,investigated in detail for supersonic flow. The relative upstream influence of a shock wave impinging on a given boundary layer has been measured for both laminar and turbulent layers. The upstream influence of a shock wave in the laminar layer is found to be of the order of 50 bounday-layer thicknesses as compared with about 5 in the turbulent case. Separation almost always occurs in the laminar boundary layer. The separation is restricted to a region of finite extent upstream of the the shock wave. In the turbulent case no separation was found. A model of the flow near the point of impingement of the shock wave on the boundary layer is given for both cases. The difference between impulse-type and step-type shock waves is discussed and their interactions with the boundary layer are compared.
Some general considerations on the experimental production of shock waves from wedges and cones are presented, as well as a discussion of boundary layer in supersonic flow. A few exampies of reflection of shock waves from supersonic shear layers are also presented
Limits on stable iron in TypeIa supernovae from NIR spectroscopy
We obtained optical and near-infrared spectra of TypeIa supernovae
(SNeIa) at epochs ranging from 224 to 496 days after the explosion. The
spectra show emission lines from forbidden transitions of singly ionised iron
and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling
of the first and second ionisation stages of iron, nickel, and cobalt to fit
the spectra using a sampling algorithm allowing us to probe a broad parameter
space. We derive velocity shifts, line widths, and abundance ratios for iron
and cobalt. The measured line widths and velocity shifts of the singly ionised
ions suggest a shared emitting region. Our data are fully compatible with
radioactive Ni decay as the origin for cobalt and iron. We compare the
measured abundance ratios of iron and cobalt to theoretical predictions of
various SNIa explosion models. These models include, in addition to
Ni, different amounts of Ni and stable Fe. We can
exclude models that produced only Fe or only Ni in addition to
Ni. If we consider a model that has Ni, Ni, and
Fe then our data imply that these ratios are Fe / Ni
and Ni / Ni .Comment: 10 pages, 7 figures, Accepted for publication in A&
Type Ia supernova constraints on compact object dark matter
The nature of dark matter (DM) is an open question in cosmology, despite its
abundance in the universe. While elementary particles have been posited to
explain DM, compact astrophysical objects such as black holes formed in the
early universe offer a theoretically appealing alternate route. Here, we
constrain the fraction of DM that can be made up of primordial black holes
(PBHs) with masses , using the Type Ia supernova Hubble
diagram. Utilizing the Dyer-Roeder distance relation, where the homogeneous
matter fraction is parameterized with , we find a maximum fractional
amount of DM in compact objects () of 0.50 at 95\% confidence level
(C.L.), in the flat CDM model and 0.49 when marginalising over a
constant dark energy equation of state. These limits do not change when
marginalising over cosmic curvature, demonstrating the robustness to the
cosmological model. When allowing for the prior on to include , we derive at 95 C.L., showing that the prior assumption of
gives a conservative upper limit on . When including Cepheid
calibrated supernovae, the 95\% C.L. constraints improve to . We
find that the estimate for the Hubble constant in our inference is consistent
with the homogeneous case, showing that inhomogeneities in the form of compact
dark matter cannot account for the observed Hubble tension. In conclusion, we
strongly exclude the possibility that PBHs with stellar masses and above form a
dominant fraction of the dark matter.Comment: to be submitted to MNRAS Letter
iPTF16abc and the population of Type Ia supernovae: Comparing the photospheric, transitional and nebular phases
Key information about the progenitor system and the explosion mechanism of
Type Ia supernovae (SNe~Ia) can be obtained from early observations, within a
few days from explosion. iPTF16abc was discovered as a young SN~Ia with
excellent early time data. Here, we present photometry and spectroscopy of the
SN in the nebular phase. A comparison of the early time data with a sample of
SNe~Ia shows distinct features, differing from normal SNe~Ia at early phases
but similar to normal SNe~Ia at a few weeks after maximum light (i.e. the
transitional phase) and well into the nebular phase. The transparency
timescales () for this sample of SNe~Ia range between 25 and 41
days indicating a diversity in the ejecta masses. also weakly correlates
with the peak bolometric luminosity, consistent with the interpretation that
SNe with higher ejecta masses would produce more Ni. Comparing the
and the maximum luminosity, L\, distribution of a sample of SNe~Ia to
predictions from a wide range of explosion models we find an indication that
the sub-Chandrasekhar mass models span the range of observed values. However,
the bright end of the distribution can be better explained by Chandrasekhar
mass delayed detonation models, hinting at multiple progenitor channels to
explain the observed bolometric properties of SNe~Ia. iPTF16abc appears to be
consistent with the predictions from the M models.Comment: 13 pages, 8 figures, accepted for publication in MNRA
Deep Learning Research: Scientometric Assessment of Global Publications Output during 2004 -17
The paper provides a quantitative and qualitative description of deep learning research using bibliometric indicators covering global research publications published during 14-year period 2004-17. Global deep learning research registered 106.76% high growth per annum, and averaged 7.99 citations per paper. Top 10 countries world- over dominate the research field with their 99.74% global publications share and more than 100% global citations share. China ranks the top with the highest (29.25%) global publications share, followed by USA (26.46%), U.K. (6.40%), etc. during the period. Canada tops in relative citation index (5.30). International collaboration has been a major driver of research in the subject with 14.96% to 53.76% of national-level share of top 10 countries output appeared as international collaborative publications. Computer Science is one of the most popular areas of research in deep learning research (76.85% share). The study identifies top 50 most productive organizations and 50 most productive authors and top 20 most productive journals reporting deep learning research and 118 highly cited papers with 100+ citations per paper
Nebular spectroscopy of SN 2014J: Detection of stable nickel in near infrared spectra
We present near infrared (NIR) spectroscopy of the nearby supernova 2014J
obtained 450 d after explosion. We detect the [Ni II] 1.939 m line
in the spectra indicating the presence of stable Ni in the ejecta. The
stable nickel is not centrally concentrated but rather distributed as the iron.
The spectra are dominated by forbidden [Fe II] and [Co II] lines. We use lines,
in the NIR spectra, arising from the same upper energy levels to place
constraints on the extinction from host galaxy dust. We find that that our data
are in agreement with the high and low found in earlier studies
from data near maximum light. Using a Ni mass prior from near maximum
light -ray observations, we find 0.05 M of stable nickel
to be present in the ejecta. We find that the iron group features are
redshifted from the host galaxy rest frame by 600 km s.Comment: 6 pages, 4 figures, submitted to A&
- …