15 research outputs found

    Selection of Optimal Material from Stir Cast Aluminum Graphene Nano Platelets Composites for Aerospace Applications

    Get PDF
    Qualitative and quantitative requirements when selecting materials for different properties can be difficult and ambiguous. An insufficient variety of materials can lead to component malfunction and failure at any point during their service. Owing to the vast availability of dissimilar materials, material selection in the engineering design phase is difficult and elusive. This study presents an EDAS (Evaluation based on Distance from Average Solution) and VIKOR (VIse Kriterijumska Optimizacijakompromisno Resenje) techniques for effective material selection for aviation applications. In this research, the selection index value was calculated using the EDAS and VIKOR entropy-based weight techniques. The MADM (multi-attribute decision making) procedure also selects the best weight per cent combination among pure aluminum reinforced with GNPs (graphene nanoplatelets) for aircraft applications based on its physical and mechanical properties. The results demonstrate that 0.5 wt% GNPs reinforced in pure aluminum has the best combination of both physical and mechanical qualities, according to the EDAS and VIKOR multi-criteria decision-making methodologies. The composites were made using the stir casting technique. MATLAB R2020a is used to grade and compare the composite materials

    Process Optimization of Deep Eutectic Solvent Pretreatment of Coffee Husk Biomass

    Get PDF
    The increased processing of coffee beans has generated huge amount of coffee husk, which are improperly disposed. Inappropriate disposal of coffee husk has led to release of toxic compounds to the environment causing serious environmental concerns. To mitigate the impact of improperly disposed coffee husk, it is suggested for valorisation of the coffee husk. Hence, this study has focussed on identifying the potential of coffee husk in maximizing the sugar yield from it which can be converted to value added product. Deep eutectic solvent (DES) involving choline chloride and lactic acid (ChCl:LA) mixed at 1:4 molar ratio was studied to investigate the effect of DES pretreatment on coffee husk to produce reducing sugar in the hydrolysis process. Pretreatment conditions of the biomass were optimized for biomass loading (5-20%, w/w), temperature (70-120 °C), and duration (60-240 min) using Response Surface Methodology (RSM) for obtaining maximum yield of reducing sugar. The RSM model predicted an optimal pretreatment condition of biomass loading with 20% (w/w), pretreated at 120 °C for 231.80 min to achieve maximum sugar yield (30.522%). The pretreatment effect on biomass composition was analyzed using the Van Soest method, which showed an increase in the cellulose content along with the hemicellulose removal when compared with the native biomass. Moreover, evaluation of chemical structural changes also confirmed the effectiveness of DES pretreatment. Thus, the current study would illustrate the potential of coffee husk to produce value-added compounds from it

    Zero Emission Hydrogen Fuelled Fuel Cell Vehicle and Advanced Strategy on Internal Combustion Engine: A Review

    No full text
    Global energy consumption has gradually increased as a result of population growth, industrialization, economic development, and rising living standards. Furthermore, as global warming and pollution worsen, the development of renewable energy sources is becoming more essential. Hydrogen is one of the most promising clean and sustainable energy carriers because it emits only water as a byproduct without carbon emission and has the highest energy efficiency. Hydrogen can be produced from a variety of raw resources, including water and biomass. Water electrolysis is one of many hydrogen production technologies that is highly recommended due to its eco-friendliness, high hydrogen generation rate, and high purity. However, in terms of long-term viability and environmental effect, Polymer Electrolyte Membrane water electrolysis has been identified as a potential approach for producing high-purity, high-efficiency hydrogen from renewable energy sources. Furthermore, the hydrogen (H2) and oxygen (O2) produced are directly employed in fuel cells and other industrial uses. As a result, an attempt has been made in this work to investigate hydrogen synthesis and utilization in fuel cell vehicles. Low-temperature combustion technology has recently been applied in engine technology to reduce smoke and NOx emissions at the same time. The advantages and limitations of homogeneous charge compression ignition, partially premixed charge compression ignition, premixed charge compression ignition, and reactivity regulated compression ignition are described separately in low-temperature combustion strategy

    A Taxonomic Checklist of Insect Biodiversity in Loyola College Campus, Chennai, Tamil Nadu, India

    No full text
    Biodiversity, which refers to the entire array of life forms, genes, and ecosystems, was born as a result of the outcome of billions and billions of years of evolutionary development. In contrast to that, increasing the number of people and economy will impact biodiversity in the global level as it will not only destroy the ecosystems but also make them vulnerable to disruption. Preservation of biodiversity is undoubtedly one of the fundamental aspects that is necessary to keep species and genetic variations along with ecosystems. There is a large variety of insect species (more than half of all known life) and they are crucial for ecosystem functioning via pollination, nutrient recycling, and food web maintenance; However, they also act as vectors of diseases and pests. This research is focused on the insect diversity in Loyola College located in Chennai which was done through the Area Search Survey Method. Using a smartphone camera, the insects were imaged and then identified via iNaturalist. The reported data confirm the occurrence of various beetle classes, among which Lepidoptera is noted as the top order. The discussion delves into the ecological significance as well as economic influence of different insect groups which include services that they provide by way of pollination, pest control and so on. Awareness of insect biodiversity is important because of its role in ecosystem balance, agricultural stability, and human wellness

    Process Optimization of Deep Eutectic Solvent Pretreatment of Coffee Husk Biomass

    No full text
    The increased processing of coffee beans has generated huge amount of coffee husk, which are improperly disposed. Inappropriate disposal of coffee husk has led to release of toxic compounds to the environment causing serious environmental concerns. To mitigate the impact of improperly disposed coffee husk, it is suggested for valorisation of the coffee husk. Hence, this study has focussed on identifying the potential of coffee husk in maximizing the sugar yield from it which can be converted to value added product. Deep eutectic solvent (DES) involving choline chloride and lactic acid (ChCl:LA) mixed at 1:4 molar ratio was studied to investigate the effect of DES pretreatment on coffee husk to produce reducing sugar in the hydrolysis process. Pretreatment conditions of the biomass were optimized for biomass loading (5-20%, w/w), temperature (70-120 °C), and duration (60-240 min) using Response Surface Methodology (RSM) for obtaining maximum yield of reducing sugar. The RSM model predicted an optimal pretreatment condition of biomass loading with 20% (w/w), pretreated at 120 °C for 231.80 min to achieve maximum sugar yield (30.522%). The pretreatment effect on biomass composition was analyzed using the Van Soest method, which showed an increase in the cellulose content along with the hemicellulose removal when compared with the native biomass. Moreover, evaluation of chemical structural changes also confirmed the effectiveness of DES pretreatment. Thus, the current study would illustrate the potential of coffee husk to produce value-added compounds from it

    Comparative proteomics of proliferative diabetic retinopathy in people with Type 2 diabetes highlights the role of inflammation, visual transduction, and extracellular matrix pathways

    No full text
    Purpose: To explore the vitreous humor proteome from type 2 diabetes subjects with proliferative diabetic retinopathy (PDR) in the Indian population. Methods: We performed mass spectrometry-based label-free quantitative analysis of vitreous proteome of PDR (n = 13) and idiopathic macular hole (IMH; control) subjects (n = 14). Nine samples of PDR and 10 samples of IMH were pooled as case and control, respectively, and compared. Four samples each of PDR and IMH were analyzed individually without pooling to validate the results of the pooled analysis. Comparative quantification was performed using Scaffold software which calculated the fold changes of differential expression. Bioinformatics analysis was performed using DAVID and STRING software. Results: We identified 469 proteins in PDR and 517 proteins in IMH vitreous, with an overlap of 172 proteins. Also, 297 unique proteins were identified in PDR and 345 in IMH. In PDR vitreous, 37 proteins were upregulated (P < 0.05) and 19 proteins were downregulated compared to IMH. Protein distribution analysis clearly demonstrated a separation of protein expression in PDR and IMH. Significantly upregulated proteins included fibrinogen gamma chain, fibrinogen beta chain, and carbonic anhydrase 1 and downregulated proteins included alpha-1-antitrypsin, retinol-binding protein 3, neuroserpin, cystatin C, carboxypeptidase E and cathepsin-D. Conclusion: Diabetic retinopathy pathogenesis involves proteins which belong to inflammation, visual transduction, and extracellular matrix pathways. Validation-based experiments using enzyme-linked immunosorbent assay (ELISA) or western blotting are needed to establish cause and effect relationships of these proteins to the disease state, to develop them as biomarkers or drug molecules

    Antibacterial, Antioxidant, Larvicidal and Anticancer Activities of Silver Nanoparticles Synthesized Using Extracts from Fruits of Lagerstroemia speciose and Flowers of Couroupita guianensis

    No full text
    The present study aimed to analyze the in vitro antibacterial, antioxidant, larvicidal and cytotoxicity properties of green synthesized silver nanoparticles (Ag NPs) using aqueous extracts from fruits of Lagerstroemia speciosa and flowers of Couropita guinensis. Synthesized Ag NPs were characterized using UV-DRS, FTIR, XRD, DLS, and High-Resolution SEM and TEM analyses. Absorption wavelength was observed at 386 nm by UV-DRS analysis and energy band gap was calculated as 3.24 eV. FTIR analysis showed the existence of various functional groups in the aqueous extract and in the NPs. DLS analysis showed the stability and particle size of the synthesized Ag NPs. SEM analysis revealed that Ag NPs are in a face centered cubic symmetry and spherical shape with a size of 23.9 nm. TEM analysis showed particle size as 29.90 nm. Ag NPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. DPPH scavenging trait of Ag NPs was ranging from 20.0 &plusmn; 0.2% to 62.4 &plusmn; 0.3% and observed significant larvicidal activity (LC50 at 0.742 ppm and LC90 at 6.061 ppm) against Culex quinquefasciatus. In vitro cytotoxicity activity of Ag NPs was also tested against human breast cancer (MCF-7) and fibroblast cells (L-929) and found that cells viabilities are ranging (500 to 25 &micro;g/mL) from 52.5 &plusmn; 0.4 to 94.0 &plusmn; 0.7% and 53.6 &plusmn; 0.5 to 90.1 &plusmn; 0.8%, respectively. The synthesized Ag NPs have the potential to be used in the various biomedical applications
    corecore