23 research outputs found

    Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Get PDF
    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role

    Uncoupling proteins, dietary fat and the metabolic syndrome

    Get PDF
    There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI) with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome

    Networks in coronary heart disease genetics as a step towards systems epidemiology

    Get PDF
    We present the use of innovative machine learning techniques in the understanding of Coronary Heart Disease (CHD) through intermediate traits, as an example of the use of this class of methods as a first step towards a systems epidemiology approach of complex diseases genetics. Using a sample of 252 middle-aged men, of which 102 had a CHD event in 10 years follow-up, we applied machine learning algorithms for the selection of CHD intermediate phenotypes, established markers, risk factors, and their previously associated genetic polymorphisms, and constructed a map of relationships between the selected variables. Of the 52 variables considered, 42 were retained after selection of the most informative variables for CHD. The constructed map suggests that most selected variables were related to CHD in a context dependent manner while only a small number of variables were related to a specific outcome. We also observed that loss of complexity in the network was linked to a future CHD event. We propose that novel, non-linear, and integrative epidemiological approaches are required to combine all available information, in order to truly translate the new advances in medical sciences to gains in preventive measures and patients care.British Heart Foundation; European Commission; British Medical Research Council; the US National Institutes of Health and Du Pont Pharma, Wilmington

    Cortical bone resorption during exercise is interleukin-6 genotype-dependent.

    No full text
    The objective of this study was to examine the relationship between the interleukin-6 (IL-6) -174 G&gt;C promoter polymorphism and exercise-induced femoral cortical bone resorption. Skeletal response to exercise was assessed in 130 male Caucasian army recruits. Five cross-sectional magnetic resonance images of the right femur were obtained before and after a 10-week period of basic physical training, and changes in cross-sectional cortical area were calculated. Recruits were genotyped for the -174 G&gt;C IL-6 promoter polymorphism. Genotype frequencies (GG 36%, GC 47%, CC 22.17%) were in Hardy-Weinberg equilibrium. The mean percentage change in proximal femoral cross-sectional cortical area was strongly IL-6 genotype-dependent, with GG homozygotes losing 6.8 (3.82)% in cortical area, GC gaining+5.5 (4.88)% and CC gaining+17.3 (9.46)% (P=0.007 for linear trend). These changes persisted throughout the right femur and were significant in the femur as a whole (P=0.03). This study demonstrates an association between a functional polymorphism in the IL-6 gene and femoral cortical remodelling during strenuous physical exercise. Previous studies have suggested an important role for IL-6 in the regulation of bone mass in postmenopausal women, and in the invasion of bone by metastatic tumour deposits. These data extend these observations to the regulation of bone mass in healthy males, supporting a fundamental role for IL-6 in the regulation of bone mass and bone remodelling in humans
    corecore