47 research outputs found

    In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography

    Get PDF
    One of the most challenging problems in clinical dermatology is the early detection of melanoma. Reflectance confocal microscopy (RCM) is an added tool to dermoscopy improving considerably diagnostic accuracy. However, diagnosis strongly depends on the experience of physicians. High-definition optical coherence tomography (HD-OCT) appears to offer additional structural and cellular information on melanocytic lesions complementary to that of RCM. However, the diagnostic potential of HD-OCT seems to be not high enough for ruling out the diagnosis of melanoma if based on morphology analysis. The aim of this paper is first to quantify in vivo optical properties such as light attenuation in melanocytic lesions by HD-OCT. The second objective is to determine the best critical value of these optical properties for melanoma diagnosis. The technique of semi-log plot whereby an exponential function becomes a straight line has been implemented on HD-OCT signals coming from four successive skin layers (epidermis, upper papillary dermis, deeper papillary dermis and superficial reticular dermis). This permitted the HD-OCT in vivo measurement of skin entrance signal (SES), relative attenuation factor normalized for the skin entrance signal (”raf1) and half value layer (z1/2). The diagnostic accuracy of HD-OCT for melanoma detection based on the optical properties, ”raf1, SES and z1/2 was high (95.6, 82.2 and 88.9 %, respectively). High negative predictive values could be found for these optical properties (96.7, 89.3 and 96.3 %, respectively) compared to morphologic assessment alone (89.9 %), reducing the risk of mistreating a malignant lesion to a more acceptable level (3.3 % instead of 11.1 %). HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with in vivo analysis of optical properties of tissue scatterers in melanocytic lesions. In vivo HD-OCT analysis of optical properties permits melanoma diagnosis with higher accuracy than in vivo HD-OCT analysis of morphology alone.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management

    Get PDF
    PURPOSE: Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are rare diseases defined by specific clinical and molecular features. The relative prevalence of these conditions was determined in Southern France. METHODS: Patients recruited from a specialized outpatient clinic over a 21-year period underwent extensive clinical investigations and 107 genes were screened by polymerase chain reaction/sequencing. RESULTS: There were 1957 IRD cases (1481 families) distributed in 70% of pigmentary retinopathy cases (56% non-syndromic, 14% syndromic), 20% maculopathies and 7% stationary conditions. Patients with retinitis pigmentosa were the most frequent (47%) followed by Usher syndrome (10.8%). Among non-syndromic pigmentary retinopathy patients, 84% had rod-cone dystrophy, 8% cone-rod dystrophy and 5% Leber congenital amaurosis. Macular dystrophies were encountered in 398 cases (30% had Stargardt disease and 11% had Best disease). There were 184 ION cases (127 families) distributed in 51% with dominant optic neuropathies, 33% with recessive/sporadic forms and 16% with Leber hereditary optic neuropathy. Positive molecular results were obtained in 417/609 families with IRDs (68.5%) and in 27/58 with IONs (46.5%). The sequencing of 5 genes (ABCA4, USH2A, MYO7A, RPGR and PRPH2) provided a positive molecular result in 48% of 417 families with IRDs. Except for autosomal retinitis pigmentosa, in which less than half the families had positive molecular results, about 75% of families with other forms of retinal conditions had a positive molecular diagnosis. CONCLUSIONS: Although gene discovery considerably improved molecular diagnosis in many subgroups of IRDs and IONs, retinitis pigmentosa, accounting for almost half of IRDs, remains only partly molecularly defined

    Muscleblind-Like 1 Knockout Mice Reveal Novel Splicing Defects in the Myotonic Dystrophy Brain

    Get PDF
    Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTGexp) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSALR transgenic mouse model which expresses a pathogenic range CTGexp. In the present study, we addressed the possibility that MBNL1 sequestration by CUGexp RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1ΔE3/ΔE3 knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1ΔE3/ΔE3 knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1ΔE3/ΔE3 brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUGexp RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain

    High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features.

    Get PDF
    PURPOSE: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report 6 novel mutations, to characterize the biochemical features of a recurrent novel mutation, and to study the clinical features of adRP patients. DESIGN: Retrospective clinical and molecular genetic study. METHODS: Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging, and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot. RESULTS: We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1-0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families. CONCLUSIONS: The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0%-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases, which could be underdiagnosed

    A new autosomal dominant eye and lung syndrome linked to mutations in TIMP3 gene

    Get PDF
    To revisit the autosomal dominant Sorsby fundus dystrophy (SFD) as a syndromic condition including late-onset pulmonary disease. We report clinical and imaging data of ten affected individuals from 2 unrelated families with SFD and carrying heterozygous TIMP3 mutations (c.572A > G, p.Y191C, exon 5, in family 1 and c.113C > G, p.S38C, exon 1, in family 2). In family 1, all SFD patients older than 50 (two generations) had also a severe emphysema, despite no history of smoking or asthma. In the preceding generation, the mother died of pulmonary emphysema and she was blind after the age of 50. Her two great-grandsons (<20 years), had abnormal Bruch Membrane thickness, a sign of eye disease. In family 2, eye and lung diseases were also associated in two generations, both occurred later, and lung disease was moderate (bronchiectasis). This is the first report of a syndromic SFD in line with the mouse model uncovering the role of TIMP3 in human lung morphogenesis and functions. The TIMP3 gene should be screened in familial pulmonary diseases with bronchiectasis, associated with a medical history of visual loss. In addition, SFD patients should be advised to avoid tobacco consumption, to practice sports, and to undergo regular pulmonary examinations

    J Med Genet

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5-40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. METHODS: We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. RESULTS: 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16 years of age in 67% of cases. Early onset disease (16 years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as 'hotspots' of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. CONCLUSIONS: Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technolog

    Media responsibility and accountability: New conceptualizations and practices

    Get PDF
    Contains fulltext : 64715.pdf (publisher's version ) (Open Access
    corecore