235 research outputs found

    New Developments in Understanding Cardiovascular Disease and the Implications for Social Work

    Get PDF
    Cardiovascular disease is now viewed as an inflammatory disease. An index of chronic inflammation (viz., C-Reactive Protein) is as good a predictor of heart attacks as are fats in blood. The data suggest that stressful events are so closely associated with chronic inflammatory states, that the body’s stress response can be viewed as an inflammatory state. This paper summarizes and explains the link between stress and cardiovascular disease. Negative health outcomes, particularly for cardiovascular diseases, are higher among those of lower socio-economic status. Differential stress among socio-economic tiers is considered as an explanation for the disparities. The literature linking cardiovascular risk factors to the stressors of workplace unfairness and lack of control over working conditions is reviewed. The role of the stressor of racism in explaining the higher rates of cardiovascular mortality in African Americans is discussed. Finally, for societies with wider gaps in income between the rich and the poor, increased stress is explored as a possible explanation for the diminished health outcomes found across all socio-economic tiers. The implications for social work direct practice and macro-practice are considered

    High-Anxious Individuals Show Increased Chronic Stress Burden, Decreased Protective Immunity, and Increased Cancer Progression in a Mouse Model of Squamous Cell Carcinoma

    Get PDF
    In spite of widespread anecdotal and scientific evidence much remains to be understood about the long-suspected connection between psychological factors and susceptibility to cancer. The skin is the most common site of cancer, accounting for nearly half of all cancers in the US, with approximately 2–3 million cases of non-melanoma cancers occurring each year worldwide. We hypothesized that a high-anxious, stress-prone behavioral phenotype would result in a higher chronic stress burden, lower protective-immunity, and increased progression of the immuno-responsive skin cancer, squamous cell carcinoma. SKH1 mice were phenotyped as high- or low-anxious at baseline, and subsequently exposed to ultraviolet-B light (1 minimal erythemal dose (MED), 3 times/week, 10-weeks). The significant strengths of this cancer model are that it uses a normal, immunocompetent, outbred strain, without surgery/injection of exogenous tumor cells/cell lines, and produces lesions that resemble human tumors. Tumors were counted weekly (primary outcome), and tissues collected during early and late phases of tumor development. Chemokine/cytokine gene-expression was quantified by PCR, tumor-infiltrating helper (Th), cytolytic (CTL), and regulatory (Treg) T cells by immunohistochemistry, lymph node T and B cells by flow cytometry, adrenal and plasma corticosterone and tissue vascular-endothelial-growth-factor (VEGF) by ELISA. High-anxious mice showed a higher tumor burden during all phases of tumor development. They also showed: higher corticosterone levels (indicating greater chronic stress burden), increased CCL22 expression and Treg infiltration (increased tumor-recruited immuno-suppression), lower CTACK/CCL27, IL-12, and IFN-γ gene-expression and lower numbers of tumor infiltrating Th and CTLs (suppressed protective immunity), and higher VEGF concentrations (increased tumor angiogenesis/invasion/metastasis). These results suggest that the deleterious effects of high trait anxiety could be: exacerbated by life-stressors, accentuated by the stress of cancer diagnosis/treatment, and mediate increased tumor progression and/or metastasis. Therefore, it may be beneficial to investigate the use of chemotherapy-compatible anxiolytic treatments immediately following cancer diagnosis, and during cancer treatment/survivorship

    Do Stress Responses Promote Leukemia Progression? An Animal Study Suggesting a Role for Epinephrine and Prostaglandin-E2 through Reduced NK Activity

    Get PDF
    In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac) also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition

    Immune neuroendocrine phenotypes in Coturnix coturnix: Do avian species show LEWIS/FISCHER-like profiles?

    Get PDF
    Immunoneuroendocrinology studies have identified conserved communicational paths in birds and mammals, e.g. the Hypothalamus-Pituitary-Adrenal axis with anti-inflammatory activity mediated by glucocorticoids. Immune neuroendocrine phenotypes (INPs) have been proposed for mammals implying the categorization of a population in subgroups underlying divergent immune-neuroendocrine interactions. These phenotypes were studied in the context of the LEWIS/FISCHER paradigm (rats expressing high or low pro-inflammatory profiles, respectively). Although avian species have some common immunological mechanisms with mammals, they have also evolved some distinct strategies and, until now, it has not been studied whether birds may also share with mammals similar INPs. Based on corticosterone levels we determined the existence of two divergent groups in Coturnix coturnix that also differed in other immune-neuroendocrine responses. Quail with lowest corticosterone showed higher lymphoproliferative and antibody responses, interferon-γ and interleukin-1β mRNA expression levels and lower frequencies of leukocyte subpopulations distribution and interleukin-13 levels, than their higher corticosterone counterparts. Results suggest the existence of INPs in birds, comparable to mammalian LEWIS/FISCHER profiles, where basal corticosterone also underlies responses of comparable variables associated to the phenotypes. Concluding, INP may not be a mammalian distinct feature, leading to discuss whether these profiles represent a parallel phenomenon evolved in birds and mammals, or a common feature inherited from a reptilian ancestor millions of years ago

    Massage-like stroking boosts the immune system in mice

    Get PDF
    Recent clinical evidence suggests that the therapeutic effect of massage involves the immune system and that this can be exploited as an adjunct therapy together with standard drug-based approaches. In this study, we investigated the mechanisms behind these effects exploring the immunomodulatory function of stroking as a surrogate of massage-like therapy in mice. C57/BL6 mice were stroked daily for 8 days either with a soft brush or directly with a gloved hand and then analysed for differences in their immune repertoire compared to control non-stroked mice. Our results show that hand-but not brush-stroked mice demonstrated a significant increase in thymic and splenic T cell number (p lt 0.05; p lt 0.01). These effects were not associated with significant changes in CD4/CD8 lineage commitment or activation profile. The boosting effects on T cell repertoire of massage-like therapy were associated with a decreased noradrenergic innervation of lymphoid organs and counteracted the immunosuppressive effect of hydrocortisone in vivo. Together our results in mice support the hypothesis that massage-like therapies might be of therapeutic value in the treatment of immunodeficiencies and related disorders and suggest a reduction of the inhibitory noradrenergic tone in lymphoid organs as one of the possible explanations for their immunomodulatory function

    Sleep and immune function

    Get PDF
    Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep–wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations

    Seasonal differences of corticosterone metabolite concentrations and parasite burden in northern bald ibis (Geronticus eremita): The role of affiliative interactions

    Get PDF
    The reproductive season is energetically costly as revealed by elevated glucocorticoid concentrations, constrained immune functions and an increased risk of infections. Social allies and affiliative interactions may buffer physiological stress responses and thereby alleviate associated effects. In the present study, we investigated the seasonal differences of immune reactive corticosterone metabolite concentrations, endoparasite burden (nematode eggs and coccidian oocysts) and affiliative interactions in northern bald ibis (Geronticus eremita), a critically endangered bird. In total, 43 individually marked focal animals from a freeranging colony were investigated. The analyses included a description of initiated and received affiliative interactions, pair bond status as well as seasonal patterns of hormone and endoparasite levels. During the reproductive season, droppings contained parasite eggs more often and corticosterone metabolite levels were higher as compared to the period after reproduction. The excretion rate of endoparasite products was lower in paired individuals than in unpaired ones, but paired animals exhibited higher corticosterone metabolite concentrations than unpaired individuals. Furthermore, paired individuals initiated affiliative behaviour more frequently than unpaired ones. This suggests that the reproductive season influences the excretion patterns of endoparasite products and corticosterone metabolites and that affiliative interactions between pair partners may positively affect endoparasite burden during periods of elevated glucocorticoid levels. Being embedded in a pair bond may have a positive impact on individual immune system and parasite resistance

    Psychological Stress-Induced, IDO1-Dependent Tryptophan Catabolism: Implications on Immunosuppression in Mice and Humans

    Get PDF
    It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer's patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood
    corecore