30 research outputs found
Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole “no-hair theorem” at the 10% level
Host galaxy magnitude of OJ 287 from its colours at minimum light
OJ 287 is a BL Lacertae type quasar in which the active galactic nucleus (AGN) outshines the host galaxy by an order of magnitude. The only exception to this may be at minimum light when the AGN activity is so low that the host galaxy may make quite a considerable contribution to the photometric intensity of the source. Such a dip or a fade in the intensity of OJ 287 occurred in 2017 November, when its brightness was about 1.75 mag lower than the recent mean level. We compare the observations of this fade with similar fades in OJ 287 observed earlier in 1989, 1999, and 2010. It appears that there is a relatively strong reddening of the B- V colours of OJ 287 when its V-band brightness drops below magnitude 17. Similar changes are also seen in V- R, V- I, and R- I colours during these deep fades. These data support the conclusion that the total magnitude of the host galaxy is V = 18.0 ± 0.3, corresponding to MK = -26.5 ± 0.3 in the K-band. This is in agreement with the results, obtained using the integrated surface brightness method, from recent surface photometry of the host. These results should encourage us to use the colour separation method also in other host galaxies with strongly variable AGN. In the case of OJ 287, both the host galaxy and its central black hole are among the biggest known, and its position in the black hole mass-galaxy mass diagram lies close to the mean correlation
Promise of persistent multi-messenger astronomy with the Blazar OJ 287
Successful observations of the seven predicted bremsstrahlung flares from the unique bright blazar OJ 287 firmly point to the presence of a nanohertz gravitational wave (GW) emitting supermassive black hole (SMBH) binary central engine. We present arguments for the continued monitoring of the source in several electromagnetic windows to firmly establish various details of the SMBH binary central engine description for OJ 287. In this article, we explore what more can be known about this system, particularly with regard to accretion and outflows from its two accretion disks. We mainly concentrate on the expected impact of the secondary black hole on the disk of the primary on 3 December 2021 and the resulting electromagnetic signals in the following years. We also predict the times of exceptional fades, and outline their usefulness in the study of the host galaxy. A spectral survey has been carried out, and spectral lines from the secondary were searched for but were not found. The jet of the secondary has been studied and proposals to discover it in future VLBI observations are mentioned. In conclusion, the binary black hole model explains a large number of observations of different kinds in OJ 287. Carefully timed future observations will be able to provide further details of its central engine. Such multi-wavelength and multidisciplinary efforts will be required to pursue multi-messenger nanohertz GW astronomy with OJ 287 in the coming decades
Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287
Successful observations of the seven predicted bremsstrahlung flares from the unique bright blazar OJ 287 firmly point to the presence of a nanohertz gravitational wave (GW) emitting supermassive black hole (SMBH) binary central engine. We present arguments for the continued monitoring of the source in several electromagnetic windows to firmly establish various details of the SMBH binary central engine description for OJ 287. In this article, we explore what more can be known about this system, particularly with regard to accretion and outflows from its two accretion disks. We mainly concentrate on the expected impact of the secondary black hole on the disk of the primary on 3 December 2021 and the resulting electromagnetic signals in the following years. We also predict the times of exceptional fades, and outline their usefulness in the study of the host galaxy. A spectral survey has been carried out, and spectral lines from the secondary were searched for but were not found. The jet of the secondary has been studied and proposals to discover it in future VLBI observations are mentioned. In conclusion, the binary black hole model explains a large number of observations of different kinds in OJ 287. Carefully timed future observations will be able to provide further details of its central engine. Such multi-wavelength and multidisciplinary efforts will be required to pursue multi-messenger nanohertz GW astronomy with OJ 287 in the coming decades
High Precision Measurements of Interstellar Dispersion Measure with the upgraded GMRT
Pulsar radio emission undergoes dispersion due to the presence of free
electrons in the interstellar medium (ISM). The dispersive delay in the arrival
time of pulsar signal changes over time due to the varying ISM electron column
density along the line of sight. Correcting for this delay accurately is
crucial for the detection of nanohertz gravitational waves using Pulsar Timing
Arrays. In this work, we present in-band and inter-band DM estimates of four
pulsars observed with uGMRT over the timescale of a year using two different
template alignment methods. The DMs obtained using both these methods show only
subtle differences for PSR 1713+0747 and J19093744. A considerable offset is
seen in the DM of PSR J1939+2134 and J21450750 between the two methods. This
could be due to the presence of scattering in the former and profile evolution
in the latter. We find that both methods are useful but could have a systematic
offset between the DMs obtained. Irrespective of the template alignment methods
followed, the precision on the DMs obtained is about pc cm
using only BAND3 and pc cm after combining data from BAND3 and
BAND5 of the uGMRT. In a particular result, we have detected a DM excess of
about pc cm on 24 February 2019 for PSR J21450750.
This excess appears to be due to the interaction region created by fast solar
wind from a coronal hole and a coronal mass ejection (CME) observed from the
Sun on that epoch. A detailed analysis of this interesting event is presented.Comment: 11 pages, 6 figures, 2 tables. Accepted by A&
Refining the prediction for OJ 287 next impact flare arrival epoch
The bright blazar OJ~287 routinely parades high brightness bremsstrahlung
flares which are explained as being a result of a secondary supermassive black
hole (SMBH) impacting the accretion disk of a primary SMBH in a binary system.
We begin by showing that these flares occur at times predicted by a simple
analytical formula, based on the Kepler equation, which explains flares since
1888. The next impact flare, namely the flare number 26, is rather peculiar as
it breaks the typical pattern of two impact flares per 12 year cycle. This will
be the third bremsstrahlung flare of the current cycle that follows the already
observed 2015 and 2019 impact flares from OJ~287. Unfortunately, astrophysical
considerations make it difficult to predict the exact arrival epoch of the
flare number 26. In the second part of the paper, we describe our recent OJ~287
observations. They show that the pre-flare light curve of flare number 22,
observed in 2005, exhibits similar activity as the pre-flare light curve in
2022, preceding the expected flare number 26 in our model. We argue that the
pre-flare activity most likely arises in the primary jet whose activity is
modulated by the transit of the secondary SMBH through the accretion disk of
the primary. Observing the next impact flare of OJ~287 in October 2022 will
substantiate the theory of disk impacts in binary black hole systems.Comment: 16 pages, 2 figure
Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
Binary black hole (BH) central engine description for the unique blazar OJ
287 predicted that the next secondary BH impact-induced bremsstrahlung flare
should peak on 2019 July 31. This prediction was based on detailed general
relativistic modeling of the secondary BH trajectory around the primary BH and
its accretion disk. The expected flare was termed the Eddington flare to
commemorate the centennial celebrations of now-famous solar eclipse
observations to test general relativity by Sir Arthur Eddington. We analyze the
multi-epoch Spitzer observations of the expected flare between 2019 July 31 and
2019 September 6, as well as baseline observations during 2019 February-March.
Observed Spitzer flux density variations during the predicted outburst time
display a strong similarity with the observed optical pericenter flare from OJ
287 during 2007 September. The predicted flare appears comparable to the 2007
flare after subtracting the expected higher base-level Spitzer flux densities
at 3.55 and 4.49 m compared to the optical R-band. Comparing the 2019 and
2007 outburst lightcurves and the previously calculated predictions, we find
that the Eddington flare arrived within 4 hours of the predicted time. Our
Spitzer observations are well consistent with the presence of a nano-Hertz
gravitational wave emitting spinning massive binary BH that inspirals along a
general relativistic eccentric orbit in OJ 287. These multi-epoch Spitzer
observations provide a parametric constraint on the celebrated BH no-hair
theorem.Comment: 8 pages, 4 figures, 1 table, to appear in ApJ