250 research outputs found

    Imaging on PAPER: Centaurus A at 148 MHz

    Full text link
    We present observations taken with the Precision Array for Probing the Epoch of Reionization (PAPER) of the Centaurus A field in the frequency range 114 to 188 MHz. The resulting image has a 25' resolution, a dynamic range of 3500 and an r.m.s. of 0.5 Jy\beam (for a beam size of 25' x 23'). A spectral index map of Cen A is produced across the full band. The spectral index distribution is qualitatively consistent with electron reacceleration in regions of excess turbulence in the radio lobes, as previously identified morphologically. Hence, there appears to be an association of 'severe weather' in radio lobes with energy input into the relativistic electron population. We compare the PAPER large scale radio image with the X-ray image from the ROSAT All Sky Survey. There is a tentative correlation between radio and X-ray features at the end of the southern lobe, some 200 kpc from the nucleus, as might be expected from inverse Compton scattering of the CMB by the relativistic electrons also responsible for the radio synchrotron emission. The magnetic fields derived from the (possible) IC and radio emission are of similar magnitude to fields derived under the minimum pressure assumptions, ~ 1 {\mu}G. However, the X-ray field is complex, with large scale gradients and features possibly unrelated to Cen A. If these X-ray features are unrelated to Cen A, then these fields are lower limits.Comment: 9 pages, 5 figures; Section 7 and Fig. 5 have been revised and minor corrections have been implemented throught the paper; submitted for publication to MNRA

    Characterizing Signal Loss in the 21 cm Reionization Power Spectrum: A Revised Study of PAPER-64

    Get PDF
    The Epoch of Reionization (EoR) is an uncharted era in our Universe's history during which the birth of the first stars and galaxies led to the ionization of neutral hydrogen in the intergalactic medium. There are many experiments investigating the EoR by tracing the 21cm line of neutral hydrogen. Because this signal is very faint and difficult to isolate, it is crucial to develop analysis techniques that maximize sensitivity and suppress contaminants in data. It is also imperative to understand the trade-offs between different analysis methods and their effects on power spectrum estimates. Specifically, with a statistical power spectrum detection in HERA's foreseeable future, it has become increasingly important to understand how certain analysis choices can lead to the loss of the EoR signal. In this paper, we focus on signal loss associated with power spectrum estimation. We describe the origin of this loss using both toy models and data taken by the 64-element configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). In particular, we highlight how detailed investigations of signal loss have led to a revised, higher 21cm power spectrum upper limit from PAPER-64. Additionally, we summarize errors associated with power spectrum error estimation that were previously unaccounted for. We focus on a subset of PAPER-64 data in this paper; revised power spectrum limits from the PAPER experiment are presented in a forthcoming paper by Kolopanis et al. (in prep.) and supersede results from previously published PAPER analyses.Comment: 25 pages, 18 figures, Accepted by Ap

    PAPER-64 Constraints On Reionization II: The Temperature Of The z=8.4 Intergalactic Medium

    Get PDF
    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. (2015). Twenty-one cm power spectra with amplitudes of hundreds of mK^2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the Cosmic Microwave Background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z=8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ~5 K for neutral fractions between 10% and 85%, above ~7 K for neutral fractions between 15% and 80%, or above ~10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.Comment: companion paper to Ali et al. (2015), ApJ 809, 61; matches version accepted to ApJ; 11 pages, 7 figure

    Mapping our Universe in 3D with MITEoR

    Full text link
    Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral hydrogen has the potential to overtake the cosmic microwave background as our most powerful cosmological probe, because it can map a much larger volume of our Universe, shedding new light on the epoch of reionization, inflation, dark matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder low-frequency radio interferometer whose goal is to test technologies that greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR accomplishes this by using massive baseline redundancy both to enable automated precision calibration and to cut the correlator cost scaling from N^2 to NlogN, where N is the number of antennas. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious HERA project, which would incorporate many identical or similar technologies using an order of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium on Phased Array Systems & Technolog

    Association between frequency of telephonic contact and clinical testing for a large, geographically diverse diabetes disease management population

    Get PDF
    Diabetes disease management (DM) programs strive to promote healthy behaviors, including obtaining hemoglobin A1c (A1c) and low-density lipoprotein (LDL) tests as part of standards of care. The purpose of this study was to examine the relationship between frequency of telephonic contact and A1c and LDL testing rates. A total of 245,668 members continuously enrolled in diabetes DM programs were evaluated for performance of an A1c or LDL test during their first 12 months in the programs. The association between the number of calls a member received and clinical testing rates was examined. Members who received four calls demonstrated a 24.1% and 21.5% relative increase in A1c and LDL testing rates, respectively, compared to members who received DM mailings alone. Response to the telephonic intervention as part of the diabetes DM programs was influenced by member characteristics including gender, age, and disease burden. For example, females who received four calls achieved a 27.7% and 23.6% increase in A1c and LDL testing, respectively, compared to females who received mailings alone; by comparison, males who were called achieved 21.2% and 19.9% relative increase in A1c and LDL testing, respectively, compared to those who received mailings alone. This study demonstrates a positive association between frequency of telephonic contact and increased performance of an A1c or LDL test in a large, diverse diabetes population participating in DM programs. The impact of member characteristics on the responsiveness to these programs provides DM program designers with knowledge for developing strategies to promote healthy behaviors and improve diabetes outcomes
    corecore