75 research outputs found

    A Compton-vetoed germanium detector with increased sensitivity at low energies

    Get PDF
    The difficulty to directly detect plutonium in spent nuclear fuel due to the high Compton background of the fission products motivates the design of a Gamma detector with improved sensitivity at low energies. We have built such a detector by operating a thin high-purity Ge detector with a large scintillator Compton veto directly behind it. The Ge detector is thin to absorb just the low-energy Pu radiation of interest while minimizing Compton scattering of high energy radiation from the fission products. The subsequent scintillator is large so that forward scattered photons from the Ge detector interact in it at least once to provide an anti-coincidence veto for the Ge detector. For highest sensitivity, additional material in the line-of-sight is minimized, the radioactive sample is kept thin, and its radiation is collimated. We will discuss the instrument design, and demonstrate the feasibility of the approach with a prototype that employs two large CsI scintillator vetoes. Initial spectra of a thin Cs-137 calibration source show a background suppression of a factor of {approx}2.5 at {approx}100 keV, limited by an unexpectedly thick 4 mm dead layer in the Ge detector

    The academic backbone: longitudinal continuities in educational achievement from secondary school and medical school to MRCP(UK) and the specialist register in UK medical students and doctors

    Get PDF
    Background: Selection of medical students in the UK is still largely based on prior academic achievement, although doubts have been expressed as to whether performance in earlier life is predictive of outcomes later in medical school or post-graduate education. This study analyses data from five longitudinal studies of UK medical students and doctors from the early 1970s until the early 2000s. Two of the studies used the AH5, a group test of general intelligence (that is, intellectual aptitude). Sex and ethnic differences were also analyzed in light of the changing demographics of medical students over the past decades. Methods: Data from five cohort studies were available: the Westminster Study (began clinical studies from 1975 to 1982), the 1980, 1985, and 1990 cohort studies (entered medical school in 1981, 1986, and 1991), and the University College London Medical School (UCLMS) Cohort Study (entered clinical studies in 2005 and 2006). Different studies had different outcome measures, but most had performance on basic medical sciences and clinical examinations at medical school, performance in Membership of the Royal Colleges of Physicians (MRCP(UK)) examinations, and being on the General Medical Council Specialist Register. Results: Correlation matrices and path analyses are presented. There were robust correlations across different years at medical school, and medical school performance also predicted MRCP(UK) performance and being on the GMC Specialist Register. A-levels correlated somewhat less with undergraduate and post-graduate performance, but there was restriction of range in entrants. General Certificate of Secondary Education (GCSE)/O-level results also predicted undergraduate and post-graduate outcomes, but less so than did A-level results, but there may be incremental validity for clinical and post-graduate performance. The AH5 had some significant correlations with outcome, but they were inconsistent. Sex and ethnicity also had predictive effects on measures of educational attainment, undergraduate, and post-graduate performance. Women performed better in assessments but were less likely to be on the Specialist Register. Non-white participants generally underperformed in undergraduate and post-graduate assessments, but were equally likely to be on the Specialist Register. There was a suggestion of smaller ethnicity effects in earlier studies. Conclusions: The existence of the Academic Backbone concept is strongly supported, with attainment at secondary school predicting performance in undergraduate and post-graduate medical assessments, and the effects spanning many years. The Academic Backbone is conceptualized in terms of the development of more sophisticated underlying structures of knowledge ('cognitive capital’ and 'medical capital’). The Academic Backbone provides strong support for using measures of educational attainment, particularly A-levels, in student selection

    Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies

    Get PDF
    Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities. Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation. Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels. Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    The UKCAT-12 study: educational attainment, aptitude test performance, demographic and socio-economic contextual factors as predictors of first year outcome in a cross-sectional collaborative study of 12 UK medical schools

    Get PDF
    Most UK medical schools use aptitude tests during student selection, but large-scale studies of predictive validity are rare. This study assesses the United Kingdom Clinical Aptitude Test (UKCAT), and its four sub-scales, along with measures of educational attainment, individual and contextual socio-economic background factors, as predictors of performance in the first year of medical school training

    THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C7_7F15_{15}CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES

    No full text
    Author Institution: Department of Chemistry, The University of North Texas, 1155 Union Circle, # 305070 Denton, TX 76203-5017, USA; Chemistry-Physics Department, Kean University, 1000 Morris Avenue, Union, NJ 07080, USAFourier transform rotational spectroscopy has been used to collect the spectrum of perfluooctanonitrile. The spectrum was weak and only one conformer was observed. The assigned spectrum currently consists of both aa- and bb-type transitions spanning JJ = 8 to 40. The rotational constants are small, AA = 681.37155(18) MHz, BB = 126.116097(48) MHz, and CC = 124.284824(49) MHz. The spectroscopic constants together with quantum chemical calculations have been used to identify the structure of the observed conformer. Notably the helical nature of the perfluoro alkyl chain is fully in evidence. Further calculations confirm that the nitrogen quadrupole coupling tensor is such that nitrogen hyperfine splitting will not be observable at the high JJ transitions recorded in our experiments. Spectroscopic constants and a discussion of the molecular structure will be presented
    corecore