10 research outputs found

    Resonant enhancement of grazing incidence neutron scattering for the characterization of thin films

    Get PDF
    We use signal enhancement in a quantum resonator for the characterization of a thin layer of vanadium hydride using neutron reflectometry and demonstrate that pressure-concentration isotherms and expansion coefficients can be extracted from the measurement of totally externally reflected neutrons only. Moreover, a consistent data analysis of the attenuation cross section allows us to detect and quantify off-specular and small angle scattering. As our experiments are effective direct beam measurements, combined with resonant signal enhancement, counting times become considerably reduced. This allows us to overcome the challenges resulting from the comparatively low brilliance of neutron beams for grazing incidence scattering experiments. Further, we discuss the potential of resonant enhancement to increase any scattering, which is of particular interest for grazing incidence small angle neutron scattering and spectroscopy

    Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies

    Get PDF
    The magnetization reversal processes are discussed for exchange-coupled ferromagnetic hard/soft bilayers made from Co[subscript 0.66]Cr[subscript 0.22]Pt[subscript 0.12] (10 and 20 nm)/Ni (from 0 to 40 nm) films with out-of-plane and in-plane magnetic easy axes respectively, based on room temperature hysteresis loops and first-order reversal curve analysis. On increasing the Ni layer thicknesses, the easy axis of the bilayer reorients from out-of-plane to in-plane. An exchange bias effect, consisting of a shift of the in-plane minor hysteresis loops along the field axis, was observed at room temperature after in-plane saturation. This effect was associated with specific ferromagnetic domain configurations experimentally determined by polarized neutron reflectivity. On the other hand, perpendicular exchange bias effect was revealed from the out-of-plane hysteresis loops and it was attributed to residual domains in the magnetically hard layer.National Science Foundation (U.S.)MIT-Spain/La Cambra de Barcelona Seed Fun

    Domain-wall structure in thin films with perpendicular anisotropy: Magnetic force microscopy and polarized neutron reflectometry study

    Get PDF
    Ferromagnetic domain patterns and three-dimensional domain-wall configurations in thin CoCrPt films with perpendicular magnetic anisotropy were studied in detail by combining magnetic force microscopy and polarized neutron reflectometry with micromagnetic simulations. With the first method, lateral dimension of domains with alternative magnetization directions normal to the surface and separated by domain walls in 20-nm-thick CoCrPt films were determined in good agreement with micromagnetic simulations. Quantitative analysis of data on reflectometry shows that domain walls consist of a Bloch wall in the center of the thin film, which is gradually transformed into a pair of Néel caps at the surfaces. The width and in-depth thickness of the Bloch wall element, transition region, and Néel caps are found consistent with micromagnetic calculations. A complex structure of domain walls serves to compromise a competition between exchange interactions, keeping spins parallel, magnetic anisotropy orienting magnetization normal to the surface, and demagnetizing fields, promoting in-plane magnetization. It is shown that the result of such competition strongly depends on the film thickness, and in the thinner CoCrPt film (10 nm thick), simple Bloch walls separate domains. Their lateral dimensions estimated from neutron scattering experiments agree with micromagnetic simulations.Microelectronics Advanced Research Corporation (MARCO)United States. Defense Advanced Research Projects Agenc

    Hydrogen-induced volume changes, dipole tensor, and elastic hydrogen-hydrogen interaction in a metallic glass

    No full text
    Hydrogen and its isotopes, absorbed in metals, induce local stress on the atomic structure, which generates a global expansion in proportion to the concentration of hydrogen. The dipole force tensor and its interaction with the stress fields give rise to an effective attractive nonlocal potential between hydrogen atoms-the elastic hydrogen-hydrogen interaction-which is a key quantity governing the phase transitions of hydrogen in metals. While the dipole tensor and the elastic interaction have been researched in crystalline materials, they remain experimentally unexplored in metallic glasses and it is unclear how these quantities are affected by the lack of point group symmetries. Here, we investigate both experimentally and theoretically the volume changes, the components of the force dipole tensor, and ultimately the elastic hydrogen-hydrogen interaction in the metallic glass V80Zr20. In situ neutron reflectometry was used to determine the deuterium-induced volume changes as a function of deuterium concentration. The one-dimensional volume expansion is found to change by more than 14% without any structural degradation, up to concentrations of one deuterium atom per metal atom. From the expansion, we determine that the out-of-plane component of the elastic dipole tensor is remarkably similar to a composition weighted sum of the ones found in crystalline vanadium and zirconium. Via ab initio calculations of both free and biaxially constrained expanded metallic structures, we determine that the trace of the dipole tensor varies with hydrogen concentration and is essentially invariant of global elastic boundary conditions. As a consequence, the elastic hydrogen-hydrogen interaction energy is found to be concentration-dependent as well, illustrating that the disordered nature of a metallic glass does not impede the mediation of the elastic attraction, but rather allows it to vary with hydrogen content

    The viscoelastic signature underpinning polymer deformation under shear flow

    No full text
    Entangled polymers are deformed by a strong shear flow. The shape of the polymer, called the form factor, is measured by small angle neutron scattering. However, the real-space molecular structure is not directly available from the reciprocal-space data, due to the phase problem. Instead, the data has to be fitted with a theoretical model of the molecule. We approximate the unknown structure using piecewise straight segments, from which we derive an analytical form factor. We fit it to our data on a semi-dilute entangled polystyrene solution under in situ shear flow. The character of the deformation is shown to lie between that of a single ideal chain (viscous) and a cross-linked network (elastic rubber). Furthermore, we use the fitted structure to estimate the mechanical stress, and find a fairly good agreement with rheology literature

    Emergent Magnetic Fan Structures in Manganite Homojunction Arrays

    No full text
    Devices with tunable magnetic noncollinearity are important components of superconducting electronics and spintronics, but they typically require epitaxial integration of several complex materials. The spin-polarized neutron reflectometry measurements on La1-xSrxMnO3 homojunction arrays with modulated Sr concentration reported herein have led to the discovery of magnetic fan structures with highly noncollinear alignment of Mn spins and an emergent periodicity twice as large as the array's unit cell. The neutron data show that these magnetic superstructures can be fully long-range ordered, despite the gradual modulation of the doping level created by charge transfer and chemical intermixing. The degree of noncollinearity can be effectively adjusted by low magnetic fields. Notwithstanding their chemical and structural simplicity, oxide homojunctions thus show considerable promise as a platform for tunable complex magnetism and as a powerful design element of spintronic devices

    Discrete Layer-by-Layer Magnetic Switching in Fe/MgO(001) Superlattices

    No full text
    We report on a discrete layer-by-layer magnetic switching in Fe/MgO superlattices driven by an antiferromagnetic interlayer exchange coupling. The strong interlayer coupling is mediated by tunneling through MgO layers with thicknesses up to at least 1.8 nm, and the coupling strength varies with MgO thickness. Furthermore, the competition between the interlayer coupling and magnetocrystalline anisotropy stabilizes both 90 degrees and 180 degrees periodic alignment of adjacent layers throughout the entire superlattice. The tunable layer-by-layer switching, coupled with the giant tunneling magnetoresistance of Fe/MgO/Fe junctions, is an appealing combination for three-dimensional spintronic memories and logic devices

    Magnetic and Electronic Properties of Weyl Semimetal Co2MnGa Thin Films

    No full text
    Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic properties of magnetron co-sputtered Co2MnGa thin films, with thicknesses ranging from 10 to 80 nm. Polarized neutron reflectometry confirmed a uniform magnetization through the films. Hard x-ray photoelectron spectroscopy revealed a high degree of spin polarization and localized (itinerant) character of the Mn d (Co d) valence electrons and accompanying magnetic moments. Further, broadband and field orientation-dependent ferromagnetic resonance measurements indicated a relation between the thickness-dependent structural and magnetic properties. The increase of the tensile strain-induced tetragonal distortion in the thinner films was reflected in an increase of the cubic anisotropy term and a decrease of the perpendicular uniaxial term. The lattice distortion led to a reduction of the Gilbert damping parameter and the thickness-dependent film quality affected the inhomogeneous linewidth broadening. These experimental findings will enrich the understanding of the electronic and magnetic properties of magnetic Weyl semimetal thin films
    corecore