595 research outputs found

    De novo loss of function mutations in KIAA2022 are associated with epilepsy and neurodevelopmental delay in females

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136530/1/cge12854_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136530/2/cge12854.pd

    Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex

    Get PDF
    Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today’s society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM) analyses: Individuals with higher Media Multitasking Index (MMI) scores had smaller gray matter density in the anterior cingulate cortex (ACC). Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences

    Time to onset of cannabidiol treatment effect and resolution of adverse events in tuberous sclerosis complex: Post hoc analysis of randomized controlled phase 3 trial GWPCARE6.

    Get PDF
    OBJECTIVE: To estimate the timing of cannabidiol (CBD) treatment effect (seizure reduction and adverse events [AEs]) onset, we conducted a post hoc analysis of GWPCARE6 (NCT02544763), a randomized, placebo-controlled, phase 3 trial in patients with drug-resistant epilepsy associated with tuberous sclerosis complex (TSC). METHODS: Patients received plant-derived pharmaceutical formulation of highly purified CBD (Epidiolex; 100 mg/ml oral solution) at 25 mg/kg/day (CBD25) or 50 mg/kg/day (CBD50) or placebo for 16 weeks (4-week titration, 12-week maintenance). Treatment started at 5 mg/kg/day for all groups and reached 25 mg/kg/day on Day 9 and 50 mg/kg/day on Day 29. Percentage change from baseline in TSC-associated seizure (countable focal or generalized) count was calculated by cumulative day (i.e., including all previous days). Time to onset and resolution of AEs were evaluated. RESULTS: Of 224 patients, 75 were randomized to CBD25, 73 to CBD50, and 76 to placebo. Median (range) age was 11.3 (1.1-56.8) years. Patients had discontinued a median (range) of 4 (0-15) antiseizure medications and were currently taking 3 (0-5). Difference in seizure reduction between CBD and placebo emerged on Day 6 (titrated dose, 15 mg/kg/day) and became nominally significant (p < .049) by Day 10. Separation between placebo and CBD in ≥50% responder rate also emerged by Day 10. Onset of AEs occurred during the first 2 weeks of the titration period in 61% of patients (CBD25, 61%; CBD50, 67%; placebo, 54%). In patients with an AE, resolution occurred within 4 weeks of onset in 42% of placebo and 27% of CBD patients and by end of trial in 78% of placebo and 51% of CBD patients. SIGNIFICANCE: Onset of treatment effect occurred within 6-10 days. AEs lasted longer for CBD than placebo, but the most common (diarrhea, decreased appetite, and somnolence) resolved during the 16-week trial in most patients

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Quality of life in childhood epilepsy with lateralized epileptogenic foci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measuring quality of life (QOL) helps to delineate mechanisms underlying the interaction of disease and psychosocial factors. In adults, epileptic foci in the left temporal lobe led to lower QOL and higher depression and anxiety as compared to the right-sided foci. No study addressed the development of QOL disturbances depending on the lateralization of epileptogenic focus. The objective of our study was to examine QOL in children with lateralized epileptiform discharges.</p> <p>Methods</p> <p>Thirty-one parents of children with epilepsy filled the Health-Related Quality of Life in Childhood Epilepsy Questionnaire (QOLCE). Fifteen children had foci in the left hemisphere and sixteen in the right, as verified with Electroencephalography (EEG) examinations.</p> <p>Results</p> <p>We found a significant correlation between foci lateralization and reduced QOL (Spearman's rho = 0.361, p < 0.046). Children with right hemispheric foci exhibited lower overall QOL, particularly in five areas: anxiety, social-activities, stigma, general-health, and quality-of-life.</p> <p>Conclusions</p> <p>We demonstrated for the first time that in children left- and right-hemispheric foci were associated with discordant QOL scores. Unlike in adults, foci in the right hemisphere led to worse emotional and social functioning demonstrating that seizures impact the brain differentially during development.</p

    Seizure control in patients with epilepsy: the physician vs. medication factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the relationship between types of healthcare providers and outcomes in patients with epilepsy. This study compares the relative effects of provider type (epileptologist vs. other neurologist) and pharmacologic treatment (newer vs. older antiepileptic drugs) on seizure control in patients with epilepsy.</p> <p>Methods</p> <p>We conducted a retrospective study of patients with medication-resistant epilepsy. Consecutive charts of 200 patients were abstracted using a standard case report form. For each patient, data included seizure frequency and medication use prior to, and while being treated by an epileptologist. Changes in seizure frequency were modeled using a generalized linear model.</p> <p>Results</p> <p>After transferring care from a general neurologist to specialized epilepsy center, patients experienced fewer seizures (p < 0.001) and were more frequently seizure-free (p < 0.001). The improved seizure control was not related to treatment with newer vs. older antiepileptic drugs (p = 0.305).</p> <p>Conclusion</p> <p>Our findings suggest an association between subspecialty epilepsy care and improved seizure control in patients with medication-resistant epilepsy. Further research should prospectively determine whether patients with medication-resistant epilepsy would benefit from being routinely referred to an epilepsy specialist.</p

    Processing of inconsistent emotional information: an fMRI study

    Get PDF
    Previous studies investigating the anterior cingulate cortex (ACC) have relied on a number of tasks which involved cognitive control and attentional demands. In this fMRI study, we tested the model that ACC functions as an attentional network in the processing of language. We employed a paradigm that requires the processing of concurrent linguistic information predicting that the cognitive costs imposed by competing trials would engender the activation of ACC. Subjects were confronted with sentences where the semantic content conflicted with the prosodic intonation (CONF condition) randomly interspaced with sentences which conveyed coherent discourse components (NOCONF condition). We observed the activation of the rostral ACC and the middle frontal gyrus when the NOCONF condition was subtracted from the CONF condition. Our findings provide evidence for the involvement of the rostral ACC in the processing of complex competing linguistic stimuli, supporting theories that claim its relevance as a part of the cortical attentional circuit. The processing of emotional prosody involved a bilateral network encompassing the superior and medial temporal cortices. This evidence confirms previous research investigating the neuronal network that supports the processing of emotional information
    corecore