21 research outputs found

    How volcanically active is an abyssal plain? Evidence for recent volcanism on 20 Ma Nazca Plate seafloor

    Get PDF
    The abyssal plains are generally assumed to be geologically inactive parts of the ocean plate interiors where processes (such as pelagic sedimentation or manganese crust and nodule formation) occur at very slow rates. In terms of intraplate volcanic activity, almost all is assumed to occur at hotspots, leading to little exploration in other intraplate regions. The Peru Basin is an abyssal plain known to host Mn-nodule fields. We present remotely-operated underwater vehicle (ROV) investigations of a small seamount adjacent to such a Mn-nodule field on 20Ma Nazca Plate crust, showing that it appears to have been recently volcanically and hydrothermally active. The seamount lies 1600km east of the nearest spreading axis (East Pacific Rise) and 600km from both the Galapagos Plateau (to the north) and the subduction zone off Peru (to the east), making off-axis, hotspot or petit-spot processes unlikely as a cause of the volcanism. The shallow mantle below the Nazca (and conjugate Pacific) Plate shows globally anomalous low seismic shear-wave velocities, perhaps reflecting higher-than-normal amounts of melt in the mantle below this region which may provide a source for the magmas. Our own regional mapping work and literature sources highlight several similar sites of probable young volcanism elsewhere in the Peru Basin which may also be related to this anomaly. The Nazca abyssal plain may be much more geologically active than previously thought. If so, this could have wider implications for, among other things, chemosynthetic ecosystem connectivity

    North Atlantic hotspot-ridge interaction near Jan Mayen Island

    Get PDF
    At slow to ultraslow spreading rates along mid-ocean ridges, thicker lithosphere typically impedes magma generation and tectonic extension can play a more significant role in crustal production (Dick et al., 2003). The source of anomalously high magma supply thus remains unclear along ridges with ultraslow-spreading rates adjacent to Jan Mayen Island in the North Atlantic (Neumann and Schilling, 1984; Mertz et al., 1991; Haase et al., 1996; Schilling et al., 1999; Trønnes et al., 1999; Haase et al., 2003; Mertz et al., 2004; Blichert-Toft et al., 2005; Debaille et al., 2009). Here we show that Jan Mayen volcanism is likely the surface expression of a small mantle plume, which exerts significant influence on nearby mid-ocean ridge tectonics and volcanism. Progressive dilution of Jan Mayen geochemical signatures with distance from the hotspot is observed in lava samples from the immediately adjacent Mohns Ridge, and morphological indicators of enhanced magma supply are observed on both the Mohns Ridge and the nearby Kolbeinsey Ridge, which additionally locally overlies a highly heterogeneous, eclogite-bearing mantle source. These morphological and geochemical influences underscore the importance of heterogeneous mantle sources in modifying melt supply and thus the local expression of tectonic boundaries

    Segment-scale volcanic episodicity : evidence from the North Kolbeinsey Ridge, Atlantic

    Get PDF
    The upper oceanic crust is produced by magmatism at mid-ocean ridges, a process thought to be characterized by cyclic bouts of intense magmatic activity, separated by periods when faulting accommodates most or even all of the plate motion. It is not known whether there is a distinct periodicity to such magmatic–tectonic cycles. Here we present high-resolution sidescan sonar data from the neovolcanic zone of the North Kolbeinsey Ridge, a shallow slow-spreading ridge where high glacial and steady post-glacial sedimentation rates allow relative flow ages to be determined with a resolution of around 2 kyr using backscatter amplitude as a proxy for sediment thickness and hence age. We identify 18 lava flow fields covering 40% of the area surveyed. A group of 7 flow fields showing the highest (and similar) backscatter intensity are scattered along 75 km of axial valley surveyed, suggesting that at least this length of the segment was magmatically active within a 1.2 kyr time window. Based on conservative age estimates for all datable flows and estimated eruption volumes, the post-glacial volcanic activity imaged is insufficient to maintain crustal thickness, implying that episode(s) of enhanced activity must have preceded the volcanism we image

    Stratigraphy and geochemistry of the Deccan Trap lavas, Western India

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D69013/86 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Report and preliminary results of Sonne Cruise SO 145/2, Talcahuano (Chile) - Arica (Chile), February 4 - February 29, 2000

    No full text
    Available from TIB Hannover: RO 7630(164) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Report and shipboard results from METEOR-Cruise M 41/2, Libreville -Vitoria, 18.3.-15.4.1998

    No full text
    SIGLEAvailable from TIB Hannover: RO 7630(137) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    SONNE 65 - Midplate II. Der Pitcairn Hotspot: Tektonische, morphologische, geochemische, hydrochemische und petrographische Untersuchungen Wissenschaftlicher Endbericht

    No full text
    SIGLEAvailable from TIB Hannover: F97B735+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman

    The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge

    No full text
    The Mid-Atlantic Ridge south of the equator is a key region for many aspects of spreading axis studies, from biogeography to ridge-hotspot interaction. Despite this, the ridge axis had, until 2004, seen little systematic study. Repeated trips to the area since then have mapped and explored some 900 km of ridge length, from 2° to 14°S. The result is complete bathymetric and side-scan coverage of the axial region and the discovery and characterization of the first hydrothermal vents south of the equator. Such multisegment detailed and interdisciplinary coverage allows us to formulate a general model for the interplay between volcanism, tectonics, and hydrothermalism on a slow spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) a deep, tectonically dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults; (b) a shallower, segment-center bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis; and (c) a very shallow axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with satellitederived predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic

    Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench

    Get PDF
    Although many of the regions on and close to the mid-ocean ridges have been extensively mapped and sampled, the abyssal intraplate regions remain essentially unsampled and unmapped, leaving huge gaps in our understanding of their geologic history and present activity. Prominent bathymetric features in these intraplate regions are fracture zones. Here we present bathymetric and sampling information from a transatlantic transect along the Vema Fracture Zone (ca. 11°N), covering crustal ages from 109 − 0 Ma on the African plate and 0–62 Ma on the South American plate. The Vema Fracture Zone is the intraplate trace of the active Vema Transform plate boundary, which offsets the present-day Mid-Atlantic Ridge by ca. 300 km left-laterally, juxtaposing zero-age crust with crust of 20 million years age. Our results show clear evidence of tectonic activity along most of the Fracture Zone, in most places likely associated with active fluid flow. Within the active Vema Transform at crustal ages of ca. 10 Ma we found clear indications of fluid flow both in the sediments and the overlying water column. This region is > 120 km from the nearest spreading axis and increases by almost an order of magnitude the maximum off-axis distance that active hydrothermal discharge has been found on the oceanic crust. Sampling of the igneous seafloor was possible at all crustal ages and the accretionary fabric imprinted on the plate during its production was prominent everywhere. Seafloor sediments show signs of extensive bioturbation. In one area, high concentrations of spherical Mn-nodules were also found and sampled. At the end of the transect we also mapped and sampled the Puerto Rico Trough, a > 8000 m-deep basin north of the Caribbean arc. Here the seafloor morphology is more complicated and strongly influenced by transpressive tectonics

    POLYNAUT - Franzoesisch-Deutsche Tauchkampagne zum Tahiti, Pitcairn und Macdonald Hotspot: Aufbau und Struktur sowie zeitliche und raeumliche Entwicklung von Hotspotvulkanen Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: F02B1259+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung, Berlin (Germany)DEGerman
    corecore