111 research outputs found

    Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS

    Get PDF
    We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a nu(mu)-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56 x 10(20) protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters theta(24) and Delta m(41)(2) and set limits on parameters of the four-dimensional Pontecorvo-Maki-Nakagawa-Sakata matrix, vertical bar U-mu 4 vertical bar(2) and vertical bar U-tau 4 vertical bar(2), under the assumption that mixing between nu(e) and nu(s) is negligible (vertical bar U-e4 vertical bar(2) = 0). No evidence for nu(mu) -\u3e nu(s) transitions is found and we set a world-leading limit on theta(24) for values of Delta m(41)(2) less than or similar to 1 eV(2)

    Measurement of single pi(0) production by coherent neutral-current nu Fe interactions in the MINOS Near Detector

    Get PDF
    Forward single pi(0) production by coherent neutral-current interactions, vA - \u3e vA pi(0), is investigated using a 2.8 x 10(20) protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range 1-8 GeV. Cross sections are obtained for the detector medium comprised of 80% iron and 20% carbon nuclei with (A) = 48, the highest- \u3c A \u3e target used to date in the study of this coherent reaction. The total cross section for coherent neutral-current single pi(0) production initiated by the v(mu) flux of the NuMI low-energy beam with mean (mode) E-v of 4.9 GeV (3.0 GeV), is 77.6 +/- 5.0 (stat)(-) (+15.0)(16.8) (syst) x 10(-40) cm(2) pernucleus. The results are in good agreement with predictions of the Berger-Sehgal model

    An improved measurement of muon antineutrino disappearance in MINOS

    Get PDF
    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.Comment: 5 pages, 4 figures. In submission to Phys.Rev.Let

    Search for flavor-changing nonstandard neutrino interactions using nu(e) appearance in MINOS

    Get PDF
    We report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using nu(e) and (nu) over bar (e) appearance candidate events from predominantly nu(mu) and (nu) over bar (mu) beams. We used a statistical selection algorithm to separate nu(e) candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, vertical bar epsilon(e tau)vertical bar, and phase, (delta(CP) + delta(e tau)), using a 30-bin likelihood fit

    Measurement of the neutrino mass splitting and flavor mixing by MINOS

    Get PDF
    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25imes10207.25 imes 10^{20} protons on target. A fit to neutrino oscillations yields values of ∣Deltam2∣=(2.32−0.08+0.12)imes10−3|Delta m^2| = (2.32^{+0.12}_{-0.08}) imes10^{-3},eV2^2 for the atmospheric mass splitting and m sin^2!(2 heta) > 0.90 (90%,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively
    • …
    corecore