18 research outputs found

    Development of Light Weight Magnesium Alloys for Low Temperature Applications Annual Progress Report, 19 Jun. 1964 - 18 Jun. 1965

    Get PDF
    Lightweight, wrought magnesium alloys for high strength and ductility and low notch sensitivity applications at cryogenic temperature

    Cyclic projectors and separation theorems in idempotent convex geometry

    Full text link
    Semimodules over idempotent semirings like the max-plus or tropical semiring have much in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of the n-fold cartesian product of the max-plus semiring it is known that one can separate a vector from a closed subsemimodule that does not contain it. We establish here a more general separation theorem, which applies to any finite collection of closed semimodules with a trivial intersection. In order to prove this theorem, we investigate the spectral properties of certain nonlinear operators called here idempotent cyclic projectors. These are idempotent analogues of the cyclic nearest-point projections known in convex analysis. The spectrum of idempotent cyclic projectors is characterized in terms of a suitable extension of Hilbert's projective metric. We deduce as a corollary of our main results the idempotent analogue of Helly's theorem.Comment: 20 pages, 1 figur

    Generalizing Tanisaki's ideal via ideals of truncated symmetric functions

    Get PDF
    We define a family of ideals IhI_h in the polynomial ring Z[x1,...,xn]\mathbb{Z}[x_1,...,x_n] that are parametrized by Hessenberg functions hh (equivalently Dyck paths or ample partitions). The ideals IhI_h generalize algebraically a family of ideals called the Tanisaki ideal, which is used in a geometric construction of permutation representations called Springer theory. To define IhI_h, we use polynomials in a proper subset of the variables x1,...,xn{x_1,...,x_n} that are symmetric under the corresponding permutation subgroup. We call these polynomials {\em truncated symmetric functions} and show combinatorial identities relating different kinds of truncated symmetric polynomials. We then prove several key properties of IhI_h, including that if h>hh>h' in the natural partial order on Dyck paths then IhIhI_{h} \subset I_{h'}, and explicitly construct a Gr\"{o}bner basis for IhI_h. We use a second family of ideals JhJ_h for which some of the claims are easier to see, and prove that Ih=JhI_h = J_h. The ideals JhJ_h arise in work of Ding, Develin-Martin-Reiner, and Gasharov-Reiner on a family of Schubert varieties called partition varieties. Using earlier work of the first author, the current manuscript proves that the ideals Ih=JhI_h = J_h generalize the Tanisaki ideals both algebraically and geometrically, from Springer varieties to a family of nilpotent Hessenberg varieties.Comment: v1 had 27 pages. v2 is 29 pages and adds Appendix B, where we include a recent proof by Federico Galetto of a conjecture given in the previous version. We also add some connections between our work and earlier results of Ding, Gasharov-Reiner, and Develin-Martin-Reiner. v3 corrects a typo in Valibouze's citation in the bibliography. To appear in Journal of Algebraic Combinatoric

    Pivoting in Linear Complementarity: Two Polynomial-Time Cases

    Get PDF
    We study the behavior of simple principal pivoting methods for the P-matrix linear complementarity problem (P-LCP). We solve an open problem of Morris by showing that Murty’s least-index pivot rule (under any fixed index order) leads to a quadratic number of iterations on Morris’s highly cyclic P-LCP examples. We then show that on K-matrix LCP instances, all pivot rules require only a linear number of iterations. As the main tool, we employ unique-sink orientations of cubes, a useful combinatorial abstraction of the P-LCP

    Carathéodory, Helly and the others in the max-plus world

    No full text
    International audienceCarathéodory's, Helly's and Radon's theorems are three basic results in discrete geometry. Their max-plus or tropical analogues have been proved by various authors. We show that more advanced results in discrete geometry also have max-plus analogues, namely, the colorful Carathéodory theorem and the Tverberg theorem. A conjecture connected to the Tverberg theorem-Sierksma's conjecture-although still open for the usual convexity, is shown to be true in the max-plus setting. © 2009 Springer Science+Business Media, LLC
    corecore