22 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Pan-Cancer analysis of the expression and regulation of matrisome genes across 32 tumor types

    No full text
    Abstract The microenvironment plays a central role in cancer, and neoplastic cells actively shape it to their needs by complex arrays of extracellular matrix (ECM) proteins, enzymes, cytokines and growth factors collectively referred to as the matrisome. Studies on the cancer matrisome have been performed for single or few neoplasms, but a more systematic analysis is still missing. Here we present a Pan-Cancer study of matrisome gene expression in 10,487 patients across 32 tumor types, supplemented with transcription factors (TFs) and driver genes/pathways regulating each tumor’s matrisome. We report on 919 TF-target pairs, either used specifically or shared across tumor types, and their prognostic significance, 40 master regulators, 31 overarching regulatory pathways and the potential for druggability with FDA-approved cancer drugs. These results provide a comprehensive transcriptional architecture of the cancer matrisome and suggest the need for development of specific matrisome-targeting approaches for future therapies

    Expression of a specific extracellular matrix signature is a favorable prognostic factor in acute myeloid leukemia

    No full text
    Abstract Relapse of acute myeloid leukemia (AML) is still dramatically frequent, imposing the need for early markers to quantify such risk. Recent evidence point to a prominent role for extracellular matrix (ECM) in AML, but its prognostic value has not yet been investigated. Here we have investigated whether the expression of a 15-ECM gene signature could be applied to clinical AML research evaluating a retrospective cohort of 61 AML patients and 12 healthy donors. Results show that patients whose ECM signature expression is at least twice as that of healthy donors have considerably longer relapse-free survival, with further stage-specific therapy outcomes

    Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery

    Get PDF
    There is a need to develop early biomarkers of acute kidney injury following cardiac surgery, where morbidity and mortality are increased by its presence. Plasma cystatin C (CyC) and plasma and urine Neutrophil Gelatinase Associated Lipocalin (NGAL) have been shown to detect kidney injury earlier than changes in plasma creatinine in critically ill patients. In order to determine the utility of urinary CyC levels as a measure of kidney injury, we prospectively collected plasma and urine from 72 adults undergoing elective cardiac surgery for analysis. Acute kidney injury was defined as a 25% or greater increase in plasma creatinine or renal replacement therapy within the first 72 hours following surgery. Plasma CyC and NGAL were not useful predictors of acute kidney injury within the first 6 hours following surgery. In contrast, both urinary CyC and NGAL were elevated in the 34 patients who later developed acute kidney injury, compared to those with no injury. The urinary NGAL at the time of ICU arrival and the urinary CyC level 6 hours after ICU admission were most useful for predicting acute kidney injury. A composite time point consisting of the maximum urinary CyC achieved in the first 6 hours following surgery outperformed all individual time points. Our study suggests that urinary CyC and NGAL are superior to conventional and novel plasma markers in the early diagnosis of acute kidney injury following adult cardiac surgery

    Disassembly of α6β4-mediated hemidesmosomal adhesions promotes tumorigenesis in PTEN-negative prostate cancer by targeting plectin to focal adhesions

    No full text
    Abstract Loss of α6β4-dependent hemidesmosomal adhesions has been observed during prostate cancer progression. However, the significance and underlying mechanisms by which aberrant hemidesmosome assembly may modulate tumorigenesis remain elusive. Using an extensive CRISPR/Cas9-mediated genetic engineering approaches in different prostate cancer cell lines combined with in vivo tumorigenesis studies in mice, bone marrow-on-chip assays and bioinformatics, as well as histological analysis of prostate cancer patient cohorts, we demonstrated that simultaneous loss of PTEN and hemidesmosomal adhesions induced several tumorigenic properties including proliferation, migration, resistance to anoikis, apoptosis, and drug treatment in vitro, and increased metastatic capacity in vivo. These effects were plectin-depended and plectin was associated with actin-rich adhesions upon hemidesmosome disruption in PTEN-negative prostate cancer cells leading to activation of EGFR/PI3K/Akt- and FAK/Src-pathways. These results suggest that analysis of PTEN and hemidesmosomal proteins may have diagnostic value helping to stratify prostate cancer patients with high risk for development of aggressive disease and highlight actin-associated plectin as a potential therapeutic target specifically in PTEN/hemidesmosome dual-negative prostate cancer

    Tumor suppressor MCPH1 regulates gene expression profiles related to malignant conversion and chromosomal assembly

    No full text
    Abstract Strong inherited predisposition to breast cancer is estimated to cause about 5–10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.Arg304ValfsTer3, as a breast cancer susceptibility allele. MCPH1 encodes a multifunctional protein involved in maintenance of genomic integrity and it is also somatically altered in various cancer types, including breast cancer. Additionally, biallelic MCPH1 mutations are causative for microcephaly and at cellular level premature chromosome condensation. To study the molecular mechanisms leading to cancer predisposition and malignant conversion, here we have modeled the effect of MCPH1 p.Arg304ValfsTer3 mutation using gene‐edited MCF10A breast epithelial cells. As a complementary approach, we also sought for additional potential cancer driver mutations in MCPH1 p.Arg304ValfsTer3 carrier breast tumors. We show that mutated MCPH1 de‐regulates transcriptional programs related to invasion and metastasis and leads to downregulation of histone genes. These global transcriptional changes are mirrored by significantly increased migration and invasion potential of the cells as well as abnormal chromosomal condensation both before and after mitosis. These findings provide novel molecular insights to MCPH1 tumor suppressor functions and establish a role in regulation of transcriptional programs related to malignant conversion and chromosomal assembly. The MCPH1 p.Arg304ValfsTer3 carrier breast tumors showed recurrent tumor suppressor gene TP53 mutations, which were also significantly over‐represented in breast tumors with somatically inactivated MCPH1

    Deletion of Col15a1 modulates the tumour extracellular matrix and leads to increased tumour growth in the MMTV-PyMT mouse mammary carcinoma model

    No full text
    Abstract Basement membrane (BM) zone-associated collagen XV (ColXV) has been shown to suppress the malignancy of tumour cells, and its restin domain can inhibit angiogenesis. In human breast cancer, as well as in many other human carcinomas, ColXV is lost from the epithelial BM zone prior to tumour invasion. Here, we addressed the roles of ColXV in breast carcinogenesis using the transgenic MMTV-PyMT mouse mammary carcinoma model. We show here for the first time that the inactivation of Col15a1 in mice leads to changes in the fibrillar tumour matrix and to increased mammary tumour growth. ColXV is expressed by myoepithelial and endothelial cells in mammary tumours and is lost from the ductal BM along with the loss of the myoepithelial layer during cancer progression while persisting in blood vessels and capillaries, even in invasive tumours. However, despite the absence of anti-angiogenic restin domain, neovascularisation was reduced rather than increased in the ColXV-deficient mammary tumours compared to controls. We also show that, in robust tumour cell transplantation models or in a chemical-induced fibrosarcoma model, the inactivation of Col15a1 does not affect tumour growth or angiogenesis. In conclusion, our results support the proposed tumour suppressor function of ColXV in mammary carcinogenesis and reveal diverse roles of this collagen in different cancer type
    corecore