240 research outputs found

    Conditional probabilities in quantum theory, and the tunneling time controversy

    Get PDF
    It is argued that there is a sensible way to define conditional probabilities in quantum mechanics, assuming only Bayes's theorem and standard quantum theory. These probabilities are equivalent to the ``weak measurement'' predictions due to Aharonov {\it et al.}, and hence describe the outcomes of real measurements made on subensembles. In particular, this approach is used to address the question of the history of a particle which has tunnelled across a barrier. A {\it gedankenexperiment} is presented to demonstrate the physically testable implications of the results of these calculations, along with graphs of the time-evolution of the conditional probability distribution for a tunneling particle and for one undergoing allowed transmission. Numerical results are also presented for the effects of loss in a bandgap medium on transmission and on reflection, as a function of the position of the lossy region; such loss should provide a feasible, though indirect, test of the present conclusions. It is argued that the effects of loss on the pulse {\it delay time} are related to the imaginary value of the momentum of a tunneling particle, and it is suggested that this might help explain a small discrepancy in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts

    Sub-femtosecond determination of transmission delay times for a dielectric mirror (photonic bandgap) as a function of angle of incidence

    Get PDF
    Using a two-photon interference technique, we measure the delay for single-photon wavepackets to be transmitted through a multilayer dielectric mirror, which functions as a ``photonic bandgap'' medium. By varying the angle of incidence, we are able to confirm the behavior predicted by the group delay (stationary phase approximation), including a variation of the delay time from superluminal to subluminal as the band edge is tuned towards to the wavelength of our photons. The agreement with theory is better than 0.5 femtoseconds (less than one quarter of an optical period) except at large angles of incidence. The source of the remaining discrepancy is not yet fully understood.Comment: 5 pages and 5 figure

    Microscopic Derivation of Non-Markovian Thermalization of a Brownian Particle

    Full text link
    In this paper, the first microscopic approach to the Brownian motion is developed in the case where the mass density of the suspending bath is of the same order of magnitude as that of the Brownian (B) particle. Starting from an extended Boltzmann equation, which describes correctly the interaction with the fluid, we derive systematicaly via the multiple time-scale analysis a reduced equation controlling the thermalization of the B particle, i.e. the relaxation towards the Maxwell distribution in velocity space. In contradistinction to the Fokker-Planck equation, the derived new evolution equation is non-local both in time and in velocity space, owing to correlated recollision events between the fluid and particle B. In the long-time limit, it describes a non-markovian generalized Ornstein-Uhlenbeck process. However, in spite of this complex dynamical behaviour, the Stokes-Einstein law relating the friction and diffusion coefficients is shown to remain valid. A microscopic expression for the friction coefficient is derived, which acquires the form of the Stokes law in the limit where the mean-free in the gas is small compared to the radius of particle B.Comment: 28 pages, no figure, submitted to Journal of Statistical Physic

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Antipsychotic Drugs: Comparison in Animal Models of Efficacy, Neurotransmitter Regulation, and Neuroprotection

    Get PDF
    Various lines of evidence indicate the presence of progressive pathophysiological processes occurring within the brains of patients with schizophrenia. By modulating chemical neurotransmission, anti-psychotic drugs may influence a variety of functions regulating neuronal resilience and viability and have the potential for neuroprotection. This article reviews the current literature describing preclinical and clinical studies that evaluate the efficacy of antipsychotic drugs, their mechanism of action and the potential of first- and second-generation antipsychotic drugs to exert effects on cellular processes that may be neuroprotective in schizophrenia. The evidence to date suggests that although all antipsychotic drugs have the ability to reduce psychotic symptoms via D2 receptor antagonism, some antipsychotics may differ in other pharmacological properties and their capacities to mitigate and possibly reverse cellular processes that may underlie the pathophysiology of schizophrenia

    Determinants of serum concentrations of organochlorine compounds in Swedish pregnant women: a cross-sectional study

    Get PDF
    BACKGROUND: We performed a cross-sectional study of associations between personal characteristics and lipid-adjusted serum concentrations of certain PCB congeners and chlorinated pesticides/metabolites among 323 pregnant primiparous women from Uppsala County (age 18–41 years) sampled 1996–1999. METHODS: Extensive personal interviews and questionnaires about personal characteristics were performed both during and after pregnancy. Concentrations of organochlorine compounds in serum lipids in late pregnancy were analysed by gas chromatography. Associations between personal characteristics and serum levels of organochlorine compounds were analysed by multiple linear regression. RESULTS: Participation rate was 82% (325 of 395 women). Serum concentrations of PCB congeners IUPAC no. 28, 52, 101, 105 and 167, and o, p'-DDT and -DDE, p, p'-DDT and -DDD, oxychlordane, and Îł- and α-HCH were in many cases below the limit of quantification (LOQ). No statistical analysis of associations with personal characteristics could be performed for these substances. Concentrations of PCB congeners IUPAC no. 118, 138, 153, 156 and 180, HCB, ÎČ-HCH, trans-nonachlor and p, p'-DDE increased with increased age and were highest in women sampled early during the 4 year study period. This shows that older women and women sampled early in the study had experienced the highest life-time exposure levels, probably mainly during childhood and adolescence. The importance of early exposures was supported by lower PCB concentrations and higher ÎČ-HCH and p, p'-DDE concentrations among women born in non-Nordic countries. Moreover, serum concentrations of certain PCBs and pesticide/metabolites were positively associated with consumption of fatty fish during adolescence, and concentrations of CB 156, CB 180 and p, p'-DDE increased significantly with number of months women had been breast-fed during infancy. Short-term changes in bodily constitution may, however, also influence serum concentrations, as suggested by negative associations between concentrations of organochlorine compounds and BMI before pregnancy and weight change during pregnancy. CONCLUSION: Although some of the associations could be caused by unknown personal characteristics confounding the results, our findings suggest that exposures to organochlorine compounds during childhood and adolescence influence the body burdens of the compounds during pregnancy

    A trehalose biosynthetic enzyme doubles as an osmotic stress sensor to regulate bacterial morphogenesis

    Get PDF
    The dissacharide trehalose is an important intracellular osmoprotectant and the OtsA/B pathway is the principal pathway for trehalose biosynthesis in a wide range of bacterial species. Scaffolding proteins and other cytoskeletal elements play an essential role in morphogenetic processes in bacteria. Here we describe how OtsA, in addition to its role in trehalose biosynthesis, functions as an osmotic stress sensor to regulate cell morphology in Arthrobacter strain A3. In response to osmotic stress, this and other Arthrobacter species undergo a transition from bacillary to myceloid growth. An otsA null mutant exhibits constitutive myceloid growth. Osmotic stress leads to a depletion of trehalose-6-phosphate, the product of the OtsA enzyme, and experimental depletion of this metabolite also leads to constitutive myceloid growth independent of OtsA function. In vitro analyses indicate that OtsA can self-assemble into protein networks, promoted by trehalose-6-phosphate, a property that is not shared by the equivalent enzyme from E. coli, despite the latter's enzymatic activity when expressed in Arthrobacter. This, and the localization of the protein in non-stressed cells at the mid-cell and poles, indicates that OtsA from Arthrobacter likely functions as a cytoskeletal element regulating cell morphology. Recruiting a biosynthetic enzyme for this morphogenetic function represents an intriguing adaptation in bacteria that can survive in extreme environments

    Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brownian Dynamics (BD) is a coarse-grained implicit-solvent simulation method that is routinely used to investigate binary protein association dynamics, but due to its efficiency in handling large simulation volumes and particle numbers it is well suited to also describe many-protein scenarios as they often occur in biological cells.</p> <p>Results</p> <p>Here we introduce our "brownmove" simulation package which was designed to handle many-particle problems with varying particle numbers and allows for a very flexible definition of rigid and flexible protein and polymer models. Both a Brownian and a Langevin dynamics (LD) propagation scheme can be used and hydrodynamic interactions are treated efficiently with our recently introduced TEA-HI ansatz [Geyer, Winter, JCP 130 (2009) 114905]. With simulations of constrained polymers and flexible models of spherical proteins we demonstrate that it is crucial to include hydrodynamics when multi-bead models are used in BD or LD simulations. Only then both the translational and the rotational diffusion coefficients and the timescales of the internal dynamics can be reproduced correctly. In the third example project we show how constant density boundary conditions [Geyer et al, JCP 120 (2004) 4573] can be used to set up a non-equilibrium simulation of diffusional transport across an array of fixed obstacles. Finally, we demonstrate how the agglomeration dynamics of multiple particles with attractive patches can be analysed conveniently with the help of a dynamic interaction network.</p> <p>Conclusions</p> <p>Combining BD and LD propagation, fast hydrodynamics, a flexible protein model, and interfaces for "open" simulation settings, our freely available "brownmove" simulation package constitutes a new platform for coarse-grained many-particle simulations of biologically relevant diffusion and transport processes.</p

    Biology of moderately halophilic aerobic bacteria

    Get PDF
    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms
    • 

    corecore