676 research outputs found

    A Generic Surface Sampler for Monte Carlo Simulations

    Full text link
    We present an implementation of a Monte Carlo algorithm that generates points randomly and uniformly on a set of arbitrary surfaces. The algorithm is completely general and only requires the geometry modeling software to provide the intersection points of an arbitrary line with the surface being sampled. We demonstrate the algorithm using the Geant4 Monte Carlo simulation toolkit. The efficiency of the sampling algorithm is discussed, along with various options in the implementation and example applications

    The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    Full text link
    The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both GERDA and Majorana.Comment: 4 pages, 1 figure, proceedings for TAUP201

    PT-symetrically regularized Eckart,Poeschl-Teller and Hulthen potentials

    Full text link
    Version 1: The well known Eckart's singular s-wave potential is PT-symmetrically regularized and continued to the whole real line. The new model remains exactly solvable and its bound states remain proportional to Jacobi polynomials. Its real and discrete spectrum exhibits several unusual features. Version 2: Parity times time-reversal symmetry of complex Hamiltonians with real spectra is usually interpreted as a weaker mathematical substitute for Hermiticity. Perhaps an equally important role is played by the related strengthened analyticity assumptions. In a constructive illustration we complexify a few potentials solvable only in s-wave. Then we continue their domain from semi-axis to the whole axis and get the new exactly solvable models. Their energies come out real as expected. The new one-dimensional spectra themselves differ quite significantly from their s-wave predecessors.Comment: Original 10-page letter ``PT-symmetrized exact solution of the singular Eckart oscillator" is extended to a full pape

    Schottky mass measurements of heavy neutron-rich nuclides in the element range 70\leZ \le79 at the ESR

    Get PDF
    Storage-ring mass spectrometry was applied to neutron-rich 197^{197}Au projectile fragments. Masses of 181,183^{181,183}Lu, 185,186^{185,186}Hf, 187,188^{187,188}Ta, 191^{191}W, and 192,193^{192,193}Re nuclei were measured for the first time. The uncertainty of previously known masses of 189,190^{189,190}W and 195^{195}Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.Comment: 10 pages, 9 figures, 2 table

    A basis for variational calculations in d dimensions

    Full text link
    In this paper we derive expressions for matrix elements (\phi_i,H\phi_j) for the Hamiltonian H=-\Delta+\sum_q a(q)r^q in d > 1 dimensions. The basis functions in each angular momentum subspace are of the form phi_i(r)=r^{i+1+(t-d)/2}e^{-r^p/2}, i >= 0, p > 0, t > 0. The matrix elements are given in terms of the Gamma function for all d. The significance of the parameters t and p and scale s are discussed. Applications to a variety of potentials are presented, including potentials with singular repulsive terms of the form b/r^a, a,b > 0, perturbed Coulomb potentials -D/r + B r + Ar^2, and potentials with weak repulsive terms, such as -g r^2 + r^4, g > 0.Comment: 22 page

    Investigation of \u3csup\u3e186\u3c/sup\u3eRe via radiative thermal-neutron capture on \u3csup\u3e185\u3c/sup\u3eRe

    Get PDF
    Partial -ray production cross sections and the total radiative thermal-neutron capture cross section for the 185Re(n,)186Re reaction were measured using the Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with an enriched 185Re target. The 186Re cross sections were standardized using well-known 35Cl(n,)36Cl cross sections from irradiation of a stoichiometric natReCl3 target. The resulting cross sections for transitions feeding the 186Re ground state from low-lying levels below a cutoff energy of Ec=746keV were combined with a modeled probability of ground-state feeding from levels above Ec to arrive at a total cross section of σ0=111(6)b for radiative thermal-neutron capture on 185Re. A comparison of modeled discrete-level populations with measured transition intensities led to proposed revisions for seven tentative spin-parity assignments in the adopted level scheme for 186Re. Additionally, 102 primary rays were measured, including 50 previously unknown. A neutron-separation energy of Sn=6179.59(5)keV was determined from a global least-squares fit of the measured -ray energies to the known 186Re decay scheme. The total capture cross section and separation energy results are comparable to earlier measurements of these values

    Ground-State of Charged Bosons Confined in a Harmonic Trap

    Full text link
    We study a system composed of N identical charged bosons confined in a harmonic trap. Upper and lower energy bounds are given. It is shown in the large N limit that the ground-state energy is determined within an accuracy of ±8\pm 8% and that the mean field theory provides a reasonable result with relative error of less than 16% for the binding energy .Comment: 15 page
    corecore