21 research outputs found
Trematominae and Artedidraconinae: contrasted mitogenome evolution for two Antarctic radiations
Cellular respiration has been widely studied in Antarctic teleost fishes because of their peculiar adaptations to an extreme environment. In parallel mitochondrial sequence markers have become highly popular for molecular systematics. However, there are few whole mitochondrial genome sequences published, and none available for some of the subfamilies. Here, we present two large mitogenome datasets including most species and multiple sequences for many species of two subfamilies, Trematominae and Artedidraconinae (Duhamel et al. 2014). These include two highly diverse but very different adaptative radiations, with contrasting divergence dates, morphological polymorphism, and habitat dominance. The sampling is based on a well identified, extensive collection resulting from the 2008 CEAMARC survey and the subsequent REVOLTA surveys in Terre Adélie (IPEV), already DNA barcoded and sequenced in previous studies. The mitogenome sequences for these two subfamilies differ in composition, gene order, and relative divergence of mitochondrial markers, with strong, taxon-specific biases like very high C contents in some regions. The gene order change provides a synapomorphy for the subfamily Trematominae and an interesting development in teleost mitogenomes. The complete Artedidraconinae mitogenomes provide a much higher amount of variable sites (approx*30), while previous sequence datasets were plagued by low informativeness (Lecointre et al. 2011). As already established on single mitochondrial genes, intraspecific variability is lower than interspecific variability within each subfamily, however interspecific variability in Artedidraconinae is lower or similar to intraspecific variability in Trematominae. This expanded dataset confirms the unusual evolution of the mitochondrial coded sequences involved in the cellular respiration in Antarctic Nototheniidae, as well as the usefulness of complete mitochondrial genomes for their systematics. The two level multiplexing (Timmermans et al. 2010) and next generation sequencing of long PCR amplicons (following Hinsinger et al. 2015) is efficient to obtain large mitogenomic datasets representative of both inter- and intraspecific variability, key to the understanding of mitochondrial evolution and a step closer to resolving the relationships among these taxa.RECTO (Refugia and Ecosystem Tolerance in the Southern Ocean, BR/154/A1/RECTO
Ancient Marine Metabarcoding - A new approach of stomach and microbiome analysis for historical fish
On the Origin and Trigger of the Notothenioid Adaptive Radiation
Adaptive radiation is usually triggered by ecological opportunity, arising
through (i) the colonization of a new habitat by its
progenitor; (ii) the extinction of competitors; or
(iii) the emergence of an evolutionary key innovation in
the ancestral lineage. Support for the key innovation hypothesis is scarce,
however, even in textbook examples of adaptive radiation. Antifreeze
glycoproteins (AFGPs) have been proposed as putative key innovation for the
adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica.
A crucial prerequisite for this assumption is the concurrence of the
notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we
use a fossil-calibrated multi-marker phylogeny of nothothenioid and related
acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All
time-constraints are cross-validated to assess their reliability resulting in
six powerful calibration points. We find that the notothenioid radiation began
near the Oligocene-Miocene transition, which coincides with the increasing
presence of Antarctic sea ice. Divergence dates of notothenioids are thus
consistent with the key innovation hypothesis of AFGP. Early notothenioid
divergences are furthermore congruent with vicariant speciation and the breakup
of Gondwana
Molecular taxonomy and identification within the Antarctic genus Trematomus (Notothenioidei, Teleostei): How valuable is barcoding with COI?
International audienc
FP7: Research on climate change in polar environments must include effects on biota of both polar regions
info:eu-repo/semantics/publishe
Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus
Abstract Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation
Historical DNA metabarcoding of the prey and microbiome of trematomid fishes using museum samples.
Antarctic specimens collected during various research expeditions are preserved in natural history collections around the world potentially offering a cornucopia of morphological and molecular data. Historical samples of marine species are, however, often preserved in formaldehyde which may render them useless for genetic analysis. We sampled stomachs and hindguts from 225 Trematomus specimens from the Natural History Museum London. These samples were initially collected between 20 and 100 years ago and fixed in either formaldehyde or ethanol. A 313 bp fragment of the cytochrome c oxidase subunit I (COI) was amplified and sequenced for prey item identification in the stomach and a 450 bp region of the 16S rRNA gene to investigate microbiome composition in the gut system. Both data sets were characterized by large dropout rates during extensive quality controls. Eventually, no unambiguous results regarding stomach content (COI) were retained, possibly due to degraded DNA, inefficient primers and contamination. In contrast, reliable microbiome composition data (16S rRNA) was obtained from 26 samples. These data showed a correlation in change of microbiome composition with fish size as well as year of the catch, indicating a microbiome shift throughout ontogeny and between samples from different decades. A comparison with contemporary samples indicated that the intestinal microbiome of Trematomus may have drastically changed within the last century. Further extensive studies are needed to confirm these patterns with higher sample numbers. Molecular analyses of museum stored fish can provide novel micro evolutionary insights that may benefit current efforts to prioritize conservation units in the Southern Ocean.Refugia and ecosystem tolerance in the Southern Ocean (RECTO) - Research project BR/154/A1/RECT
The actinopterygian diversity of the CEAMARC cruises: Barcoding and molecular taxonomy as a multi-level tool for new findings
International audienc