21 research outputs found

    EEG effect of orexin A in freely moving rats

    No full text
    Orexin A and orexin B are neuropeptides produced by a group of neurons located in the lateral hypothalamus which send widespread projections virtually to the whole neuraxis. Several studies indicated that orexins play a crucial role in the sleep-wake regulation and in the pathomechanism of the sleep disorder narcolepsy. As no data are available related to the EEG effects of orexin A in healthy, freely moving rats, the aim of the present experiments was to analyze EEG power changes in the generally used frequency bands after intracerebroventricular orexin A administration.Orexin A administration (0.84 and 2.8 nM/rat) differently affected fronto-occipital EEG waves in the different frequency bands recorded for 24 hours. Delta (1–4 Hz) and alpha (10–16 Hz) power decreased, while theta (4–10 Hz) and beta (16–48 Hz) power increased. Decrease of the delta power was followed by a rebound in case of the higher orexin A dose. This complex picture might be explained by the activation of several systems by the orexin A administration. Among these systems, cortical and thalamic circuits as well as the role of the neurons containing corticotrophin-releasing factor might be of significant importance

    Vagus Nerve Stimulation During Rehabilitative Training Improves Forelimb Recovery After Chronic Ischemic Stroke in Rats

    No full text
    BACKGROUND AND OBJECTIVE: Stroke is a leading cause of long-term disability. Currently, there are no consistently effective rehabilitative treatments for chronic stroke patients. Our recent studies demonstrate that VNS paired with rehabilitative training improves recovery of function in multiple models of stroke. Here, we evaluated the ability of VNS paired with rehabilitative training to improve recovery of forelimb strength when initiated many weeks after a cortical and subcortical ischemic lesion in subjects with stable, chronic motor deficits. METHODS: Rats were trained to perform an automated, quantitative measure of voluntary forelimb strength. Once proficient, rats received injections of endothelin-1 to cause a unilateral cortical and subcortical ischemic lesion. Six weeks after lesion, rats underwent rehabilitative training paired with VNS (Paired VNS; n = 10), rehabilitative training with equivalent VNS delivered two hours after daily rehabilitative training (Delayed VNS; n = 10), or rehabilitative training without VNS (Rehab, n = 9). RESULTS: VNS paired with rehabilitative training significantly improved recovery of forelimb function compared to control groups. The Paired VNS group displayed an 86% recovery of strength, the Rehab group exhibited 47% recovery, and the Delayed VNS group exhibited 42% recovery. Improvement in forelimb function was sustained in the Paired VNS group after the cessation of stimulation, potentially indicating lasting benefits. No differences in intensity of rehabilitative training, lesion size, or MAP-2 expression were observed between groups. CONCLUSION: VNS paired with rehabilitative training confers significantly greater recovery of forelimb function after chronic ischemic stroke in rats

    Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding

    No full text
    Circadian rhythms in neuronal ensemble, subpopulations, and single unit activity were recorded in the suprachiasmatic nuclei (SCN) of rat hypothalamic slices. Decomposition of the ensemble pattern revealed that neuronal subpopulations and single units within the SCN show surprisingly short periods of enhanced electrical activity of ≈5 h and show maximal activity at different phases of the circadian cycle. The summed activity accounts for the neuronal ensemble pattern of the SCN, indicating that circadian waveform of electrical activity is a composed tissue property. The recorded single unit activity pattern was used to simulate the responsiveness of SCN neurons to different photoperiods. We inferred predictions on changes in peak width, amplitude, and peak time in the multiunit activity pattern and confirmed these predictions with hypothalamic slices from animals that had been kept in a short or long photoperiod. We propose that the animals' ability to code for day length derives from plasticity in the neuronal network of oscillating SCN neurons

    Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss

    Get PDF
    The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within "non-visible" phenotypically defined cells has fundamental implications for our understanding of brain plasticity
    corecore