620 research outputs found

    The Latin Leaflet, Number 29

    Get PDF
    Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety. Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety. The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices

    Means and variances of some characters in base populations, with emphasis on grain yield in soybean.

    Get PDF
    The aim of this study was to evaluate in early generations of self-fertilization the potential of single, double and multiple crosses, as producers of base population for soybean breeding programs. The crosses were made involving eight parents with low coefficient of parentage between them. The experiment with the segregating populations was conducted in a completely randomized design with three replications. The results were subjected to analysis based on plot means and individual plants. For the characters number of days to flowering and to maturity, and plant height at flowering and at maturity, the means obtained with the F3 populations of single crosses, the F3 populations of double crosses and the F2 populations of multiple crosses were similar. The best results for grain yield per plant were obtained with the F3 populations of double crosses. ln general, no change was detected in the values of genetic variance of the segregating populations because of the number of parents used in the crosses

    Lamination And Microstructuring Technology for a Bio-Cell Multiwell array

    Full text link
    Microtechnology becomes a versatile tool for biological and biomedical applications. Microwells have been established long but remained non-intelligent up to now. Merging new fabrication techniques and handling concepts with microelectronics enables to realize intelligent microwells suitable for future improved cancer treatment. The described technology depicts the basis for the fabrication of a elecronically enhanced microwell. Thin aluminium sheets are structured by laser micro machining and laminated successively to obtain registration tolerances of the respective layers of 5..10\^AΌ\mum. The microwells lasermachined into the laminate are with 50..80\^AΌ\mum diameter, allowing to hold individual cells within the well. The individual process steps are described and results on the microstructuring are given.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Mobile Cloud Support for Semantic-Enriched Speech Recognition in Social Care

    Get PDF
    Nowadays, most users carry high computing power mobile devices where speech recognition is certainly one of the main technologies available in every modern smartphone, although battery draining and application performance (resource shortage) have a big impact on the experienced quality. Shifting applications and services to the cloud may help to improve mobile user satisfaction as demonstrated by several ongoing efforts in the mobile cloud area. However, the quality of speech recognition is still not sufficient in many complex cases to replace the common hand written text, especially when prompt reaction to short-term provisioning requests is required. To address the new scenario, this paper proposes a mobile cloud infrastructure to support the extraction of semantics information from speech recognition in the Social Care domain, where carers have to speak about their patients conditions in order to have reliable notes used afterward to plan the best support. We present not only an architecture proposal, but also a real prototype that we have deployed and thoroughly assessed with different queries, accents, and in presence of load peaks, in our experimental mobile cloud Platform as a Service (PaaS) testbed based on Cloud Foundry

    Structural and Thermal Behaviour of a Timber-concrete Prefabricated Composite Wall System

    Get PDF
    Abstract Wood is the oldest building materials and still now it plays an important role in the construction sector. There are many general advantages in using timber for building purposes. First of all, it is an environmentally friendly, easily recyclable material; it has a low weight in relation to strength, which is advantageous for transport, handling and production; moreover wood has aesthetic qualities, which give great possibilities in architectural design. Lastly wooden structures have an excellent performance in case of earthquake if compared to traditional structures. In Europe the development of the timber-concrete composite structures (TCC) began during a shortage of steel for reinforcement in concrete in the beginning of XX century. TCC application was primarily a refurbishment technique for old historical buildings, during the last 50 years interest in TCC systems has increased, resulting in the construction also of new buildings. This paper presents the analysis of the structural and thermal behaviour of an timber-concrete prefabricated composite wall system, the Concrete Glulam Framed Panel (CGFP) which is a panel made of a concrete slab and a structural glulam frame. The research analyses the structural performance with quasi-static in-plane tests, focused on the in-plane strength and stiffness of individual panels, and the thermal behaviour of the system with steady state tests using an hot box apparatus. The results validate the efficacy of proposed system ensuring the resistance and the dissipative structural behaviour through the hierarchy response characterized by the wood frame, the braced reinforced concrete panel of the singular module and by the rocking effects of global system. On the other side hot-box measures demonstrated a high level of thermal resistance of the system reaching U-values around 0,20 W m -2 K -1 . Moreover experimental data permitted to calibrate a FEM model with which will be possible to study and analyse the panels in different conditions and configuration in both mechanical and thermal field

    On predicting scan profiles: the nature of the `aberration function'

    Full text link

    Photoperiodism and genetic control of the long juvenile period in soybean: a review.

    Get PDF
    Soybean (Glycine max (L.) Merrill)is a short day plant that flowers when days are shorter than the maximum critical value, and this period is specific for each genotype. Soybean sensitivity to photoperiodism determines the limits of the sowing period for a latitude and hinders adaptation to wider ranges of latitude. The long juvenile period (LJP), which delays flowering under short day condictions, has been identified in soybean cultivars. The introduction of the LJP characteristic in soybean has made its cultivation possible in regions with latitudes lower than 15 o . Knowledge of the controlling genetic mechanisms of this characteristic can help in the development of soybean genotypes for lower latitudes with greater adaptation to sowing periods within the same latitude. Some conclusions about the genetic LJP control in soybean were reached from the present review: a) plants with LJP have a lower development rate for flowering, resulting in the lengthening of the vegetative period; b) the LJP characteristic has a direct influence on plant photoreceptivity and flowering induction; c) the genetic control of flowering time in short days is determined by a different and independent genetic system from that which determines long day flowering time; d) late flowering under short day conditions is a quantitative characteristic controlled by recessive genes, and it is believed that one to five main genes control flowering. Genotypes with a single pair of recessive alleles did not have LJP

    Siloxane Diacrylate-based All-Solid Polymer Electrolytes for Lithium Batteries

    Get PDF
    Fully solid polymer electrolyte (SPE) membranes were prepared by UV induced free radical polymerisation (UV-curing) of acrylated siloxane polyalkyleneoxide copolymers in the presence of different lithium salts. The main chain contains locally mobile segments of ethoxy groups as part of the copolymer, and these moieties can provide coordination sites for the mobility of Li+ ions. The materials are produced through a solvent free procedure, and used as ion-conducting media as well as a separator in high temperature lithium-based batteries. The preparation process is easy, simple and versatile. The final product obtained demonstrates good mechanical integrity due to the highly cross-linked nature of the polymer network, and wide thermal stability. The membranes are also soft, easy to manage and transparent. They also exhibit acceptable ionic conductivity and wide electrochemical stability window
    • 

    corecore