40 research outputs found

    Combining niche-shift and population genetic analyses predicts rapid phenotypic evolution during invasion

    Get PDF
    Rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction and magnitude of phenotypic evolution during invasion has been underestimated. We explored the utility of niche-shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe and northwestern Africa within the last 100 years. A genetically-informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations and as predicted, non-native populations had greater tolerance for ecologically-relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically-informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions, and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion

    Differentiation of haploid and diploid fertilities in Gracilaria chilensis affect ploidy ratio

    Get PDF
    Background Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. Results We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. Conclusions Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.AHE was supported by fellowships SFRH/BPD/63703/2009, SFRH/BPD/ 107878/2015 and UID/Multi/04326/2016 of the National Science Foundation FCT of Portugal.info:eu-repo/semantics/publishedVersio

    Sexual selection in seaweed? Testing Bateman's principles in the red alga Gracilaria gracilis

    No full text
    International audienceIn anisogamous species, sexual selection is expected to be stronger in males. Bateman's principles state that the variance in (i) reproductive and (ii) mating success is greater for males, and (iii) the relationship between reproductive success and mating success (the Bateman gradient) is also stronger for males than for females. Sexual selection, based on Bateman's principles, has been demonstrated in animals and some angiosperms, but never in a seaweed. Here we focus on the oogamous haploid-diploid rhodophyte Gracilaria gracilis in which previous studies have shown evidence for non-random mating, suggesting the existence of male–male competition and female choice. We estimated mating and reproductive success using paternity analyses in a natural population where up to 92% of fertilizations occurred between partners of that population. The results show that the variance in mating success is significantly greater in males than in females and that the Bateman gradient is positive only in males. Distance to female partners also explains a minor part of the variance in male mating success. Although there is no evidence for sexual dimorphism, our study supports the hypothesis that sexual selection occurs in G. gracilis , probably on male traits, even if we cannot observe, characterize or quantify them yet

    Pollinators of the sea: A discovery of animal-mediated fertilization in seaweed

    No full text
    The long-held belief that animal-mediated pollination is absent in the sea has recently been contradicted in seagrasses, motivating investigations of other marine phyla. This is particularly relevant in red algae, in which female gametes are not liberated and male gametes are not flagellated. Using experiments with the isopod Idotea balthica and the red alga Gracilaria gracilis, we demonstrate that biotic interactions dramatically increase the fertilization success of the alga through animal transport of spermatia on their body. This discovery suggests that animal-mediated fertilization could have evolved independently in terrestrial and marine environments and raises the possibility of its emergence in the sea before plants moved ashore

    Esophageal perforation in eosinophilic esophagitis: five cases in children

    No full text
    Background and study aims  Eosinophilic esophagitis (EoE) is a chronic immune disease with increasing incidence. It is clinically defined by symptoms of esophageal dysfunction and histologically by eosinophilic polynuclear cell infiltration of the esophageal mucosa. Symptoms are not specific and include gastroesophageal reflux disease (GERD), dysphagia, vomiting or dietary blockages. Chronic inflammation of the mucosa may lead to narrowing of the esophageal lumen responsible for impactions. Extraction procedures can be complicated by dissection and perforation. Rare spontaneous ruptures of the esophagus known as Boerhaave syndrome are also possible. We report five cases of esophageal perforation in children with EoE, three with spontaneous rupture and two after an endoscopic procedure. The evolution was favorable under medical treatment

    Evolution of life cycles and reproductive traits: Insights from the brown algae.

    No full text
    A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life-history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi-gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy
    corecore