71 research outputs found

    Adenylyl cyclases (ACs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Adenylyl cyclase, E.C. 4.6.1.1, converts ATP to cyclic AMP and pyrophosphate. Mammalian membrane-delimited adenylyl cyclases (nomenclature as approved by the NC-IUPHAR Subcommittee on Adenylyl cyclases [9]) are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators Gαs (the stimulatory G protein α subunit) and forskolin (except AC9, [21]). adenosine and its derivatives (e.g. 2',5'-dideoxyadenosine), acting through the P-site,are inhibitors of adenylyl cyclase activity [27]. Four families of membranous adenylyl cyclase are distinguishable: calmodulin-stimulated (AC1, AC3 and AC8), Ca2+- and Gβγ-inhibitable (AC5, AC6 and AC9), Gβγ-stimulated and Ca2+-insensitive (AC2, AC4 and AC7), and forskolin-insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH-insensitive) sensor [5]

    Adenylyl cyclases (ACs) in GtoPdb v.2023.1

    Get PDF
    Adenylyl cyclase, E.C. 4.6.1.1, converts ATP to cyclic AMP and pyrophosphate. Mammalian membrane-delimited adenylyl cyclases (nomenclature as approved by the NC-IUPHAR Subcommittee on Adenylyl cyclases [11]) are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators Gαs (the stimulatory G protein α subunit) and forskolin (except AC9, [28]). adenosine and its derivatives (e.g. 2',5'-dideoxyadenosine), acting through the P-site,are inhibitors of adenylyl cyclase activity [35]. Four families of membranous adenylyl cyclase are distinguishable: calmodulin-stimulated (AC1, AC3 and AC8), Ca2+- and Gβγ-inhibitable (AC5, AC6 and AC9), Gβγ-stimulated and Ca2+-insensitive (AC2, AC4 and AC7), and forskolin-insensitive (AC9) forms. A soluble adenylyl cyclase (AC10) lacks membrane spanning regions and is insensitive to G proteins.It functions as a cytoplasmic bicarbonate (pH-insensitive) sensor [7]

    Gαi Controls the Gating of the G Protein-Activated K+ Channel, GIRK

    Get PDF
    AbstractGIRK (Kir3) channels are activated by neurotransmitters coupled to G proteins, via a direct binding of Gβγ. The role of Gα subunits in GIRK gating is elusive. Here we demonstrate that Gαi is not only a donor of Gβγ but also regulates GIRK gating. When overexpressed in Xenopus oocytes, GIRK channels show excessive basal activity and poor activation by agonist or Gβγ. Coexpression of Gαi3 or Gαi1 restores the correct gating parameters. Gαi acts neither as a pure Gβγ scavenger nor as an allosteric cofactor for Gβγ. It inhibits only the basal activity without interfering with Gβγ-induced response. Thus, GIRK is regulated, in distinct ways, by both arms of the G protein. Gαi probably acts in its GDP bound form, alone or as a part of Gαβγ heterotrimer

    Dopamine D2 Receptor-Mediated Heterologous Sensitization of AC5 Requires Signalosome Assembly

    Get PDF
    Chronic dopamine receptor activation is implicated in several central nervous system disorders. Although acute activation of Gαi-coupled D2 dopamine receptors inhibits adenylyl cyclase, persistent activation enhances adenylyl cyclase activity, a phenomenon called heterologous sensitization. Previous work revealed a requirement for Gαs in D2-induced heterologous sensitization of AC5. To elucidate the mechanism of Gαs dependency, we expressed Gαs mutants in Gαs-deficient GnasE2−/E2− cells. Neither Gαs-palmitoylation nor Gαs-Gβγ interactions were required for sensitization of AC5. Moreover, we found that coexpressing βARKct-CD8 or Sar1(H79G) blocked heterologous sensitization. These studies are consistent with a role for Gαs-AC5 interactions in sensitization however, Gβγ appears to have an indirect role in heterologous sensitization of AC5, possibly by promoting proper signalosome assembly

    Zinc inhibits TRPV1 to alleviate chemotherapy-induced neuropathic pain

    Get PDF
    Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1

    G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs)

    Get PDF
    G protein-coupled receptors (GPCRs) are the largest group of receptors involved in cellular signaling across the plasma membrane and a major class of drug targets. The canonical model for GPCR signaling involves three components the GPCR, a heterotrimeric G protein and a proximal plasma membrane effector that have been generally thought to be freely mobile molecules able to interact by 'collision coupling'. Here, we synthesize evidence that supports the existence of GPCR-effector macromolecular membrane assemblies (GEMMAs) comprised of specific GPCRs, G proteins, plasma membrane effector molecules and other associated transmembrane proteins that are pre-assembled prior to receptor activation by agonists, which then leads to subsequent rearrangement of the GEMMA components. The GEMMA concept offers an alternative and complementary model to the canonical collision-coupling model, allowing more efficient interactions between specific signaling components, as well as the integration of the concept of GPCR oligomerization as well as GPCR interactions with orphan receptors, truncated GPCRs and other membrane-localized GPCR-associated proteins. Collision-coupling and pre-assembled mechanisms are not exclusive and likely both operate in the cell, providing a spectrum of signaling modalities which explains the differential properties of a multitude of GPCRs in their different cellular environments. Here, we explore the unique pharmacological characteristics of individual GEMMAs, which could provide new opportunities to therapeutically modulate GPCR signaling

    Structural basis of adenylyl cyclase 9 activation

    Get PDF
    Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four conformations described here show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation

    Structural basis of adenylyl cyclase 9 activation

    Full text link
    Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four conformations described here show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation

    Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase

    Get PDF
    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A2A receptor and dopamine D2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR
    corecore