190 research outputs found

    2D Rutherford-Like Scattering in Ballistic Nanodevices

    Full text link
    Ballistic injection in a nanodevice is a complex process where electrons can either be transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counter-intuitively ease ballistic electron injection. On the contrary, local charge accumulation can focus the semi-classical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR, and simulations of the conductance of the same device are consistent, and agree to show that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation surprisingly fits the simple Rutherford formalism in two-dimensions in the classical limit

    Formation of quantum dots in the potential fluctuations of InGaAs heterostructures probed by scanning gate microscopy

    Full text link
    The disordered potential landscape in an InGaAs/InAlAs two-dimensional electron gas patterned into narrow wires is investigated by means of scanning gate microscopy. It is found that scanning a negatively charged tip above particular sites of the wires produces conductance oscillations that are periodic in the tip voltage. These oscillations take the shape of concentric circles whose number and diameter increase for more negative tip voltages until full depletion occurs in the probed region. These observations cannot be explained by charging events in material traps, but are consistent with Coulomb blockade in quantum dots forming when the potential fluctuations are raised locally at the Fermi level by the gating action of the tip. This interpretation is supported by simple electrostatic simulations in the case of a disorder potential induced by ionized dopants. This work represents a local investigation of the mechanisms responsible for the disorder-induced metal-to-insulator transition observed in macroscopic two-dimensional electron systems at low enough density

    Scanning Gate Spectroscopy of transport across a Quantum Hall Nano-Island

    Full text link
    We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.Comment: 13 pages, 3 figure

    Scanning-gate microscopy of semiconductor nanostructures: an overview

    Full text link
    This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.Comment: Invited talk by SH at 39th "Jaszowiec" International School and Conference on the Physics of Semiconductors, Krynica-Zdroj, Poland, June 201

    Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox

    Full text link
    We present evidence for a counter-intuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.Comment: 2nd version with minor stylistic corrections. To appear in Phys. Rev. Lett.: Editorially approved for publication 6 January 201

    Parity violation in radiative neutron capture on deuteron

    Full text link
    Parity violating (PV) effects in neutron-deuteron radiative capture are studied using Desplanques, Donoghue, and Holstein (DDH) and effective field theory weak potentials. The values of PV effects are calculated using wave functions, obtained by solving three-body Faddeev equations in configuration space for phenomenological strong potentials. The relations between physical observables and low-energy constants are presented, and dependencies of the calculated PV effects on strong and weak potentials are discussed. The presented analysis shows the possible reason for the existing discrepancy in PV nuclear data analysis using the DDH approach and reveals a new opportunity to study short range interactions in nuclei

    Vertical and lateral manipulation of single Cs atoms on the semiconductor InAs(111)A

    Get PDF
    The tip of the scanning tunneling microscope can be used to position atoms and molecules on surfaces with atomic scale precision. Here, we report the controlled vertical and lateral manipulation of single Cs atoms on the InAs(111)A surface. The Cs adatom adsorbs on the In-vacancy site of the InAs(111)A—(2x2) surface reconstruction. Lateral manipulation is possible in all directions over the surface, not just along high-symmetry directions. Both pushing and pulling modes were observed in the height profile of the tip. We assembled two artificial structures, demonstrating the reliability of the manipulation procedures. Structures remained intact to a temperature of at least 44 K

    Planning the electron traffic in semiconductor networks: A mesoscopic analog of the Braess paradox encountered in road networks

    Full text link
    By combining quantum simulations of electron transport and scanning-gate microscopy, we have shown that the current transmitted through a semiconductor two-path rectangular network in the ballistic and coherent regimes of transport can be paradoxically degraded by adding a third path to the network. This is analogous to the Braess paradox occurring in classical networks. Simulations reported here enlighten the role played by congestion in the network.Comment: 31st Int. Conf. Phys. Semiconductors, Zurich, July-August 201

    Structural and Content Diversity of Mitochondrial Genome in Beet: A Comparative Genomic Analysis

    Get PDF
    Despite their monophyletic origin, mitochondrial (mt) genomes of plants and animals have developed contrasted evolutionary paths over time. Animal mt genomes are generally small, compact, and exhibit high mutation rates, whereas plant mt genomes exhibit low mutation rates, little compactness, larger sizes, and highly rearranged structures. We present the (nearly) whole sequences of five new mt genomes in the Beta genus: four from Beta vulgaris and one from B. macrocarpa, a sister species belonging to the same Beta section. We pooled our results with two previously sequenced genomes of B. vulgaris and studied genome diversity at the species level with an emphasis on cytoplasmic male-sterilizing (CMS) genomes. We showed that, contrary to what was previously assumed, all three CMS genomes belong to a single sterile lineage. In addition, the CMSs seem to have undergone an acceleration of the rates of substitution and rearrangement. This study suggests that male sterility emergence might have been favored by faster rates of evolution, unless CMS itself caused faster evolution
    • …
    corecore