141 research outputs found

    Silver-Doped Cadmium Selenide/Graphene Oxide-Filled Cellulose Acetate Nanocomposites for Photocatalytic Degradation of Malachite Green toward Wastewater Treatment

    Get PDF
    Silver-doped cadmium selenide/graphene oxide (GO) (Ag-CdSe/GO) nanocomposites have been synthesized, loaded in cellulose acetate (CA) to form Ag-CdSe/GO@CA heterostructure nanofibers, and characterized in terms of structural, morphological, photocatalytic properties, among others. The photocatalytic degradation of malachite green (MG) was estimated using cadmium selenide-filled CA (CdSe@CA), silver-doped cadmium selenide-filled CA (Ag-CdSe@CA), cadmium selenide/GO-filled CA (CdSe/GO@CA), and silver-doped cadmium selenide/GO-filled CA (Ag-CdSe/GO@CA) nanocomposite materials. The Ag-CdSe/GO@CA nanocomposites exhibit and retain an enhanced photocatalytic activity for the degradation of MG dye. This amended performance is associated with the multifunctional supporting impacts of GO, Ag, and CA on the composite structure and properties. The superior photocatalytic activity is related to the fact that both Ag and GO can act as electron acceptors that boost the separation efficiency of photogenerated carriers and the loading of the combined nanocomposite (Ag-CdSe@GO) on CA nanofibers, which can augment the adsorption of electrons and holes and facilitate the movement of carriers. The stability of Ag-CdSe/GO@CA nanocomposite photocatalysts demonstrates suitable results even after five recycles. This study establishes an advanced semiconductor-based hybrid nanocomposite material for efficient photocatalytic degradation of organic dyes.The Academy of Scientific Research and Technology (ASRT), Egypt, Grant No. 6510, supported this project financially

    Quantitative Analysis of Peripheral Tissue Perfusion Using Spatiotemporal Molecular Dynamics

    Get PDF
    Background: Accurate measurement of peripheral tissue perfusion is challenging but necessary to diagnose peripheral vascular insufficiency. Because near infrared (NIR) radiation can penetrate relatively deep into tissue, significant attention has been given to intravital NIR fluorescence imaging. Methodology/Principal Findings: We developed a new optical imaging-based strategy for quantitative measurement of peripheral tissue perfusion by time-series analysis of local pharmacokinetics of the NIR fluorophore, indocyanine green (ICG). Time-series NIR fluorescence images were obtained after injecting ICG intravenously in a murine hindlimb ischemia model. Mathematical modeling and computational simulations were used for translating time-series ICG images into quantitative pixel perfusion rates and a perfusion map. We could successfully predict the prognosis of ischemic hindlimbs based on the perfusion profiles obtained immediately after surgery, which were dependent on the preexisting collaterals. This method also reflected increases in perfusion and improvements in prognosis of ischemic hindlimbs induced by treatment with vascular endothelial growth factor and COMP-angiopoietin-1. Conclusions/Significance: We propose that this novel NIR-imaging-based strategy is a powerful tool for biomedical studies related to the evaluation of therapeutic interventions directed at stimulating angiogenesis

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Pharmacogenomics study of thiazide diuretics and QT interval in multi-ethnic populations: the cohorts for heart and aging research in genomic epidemiology

    Get PDF
    Thiazide diuretics, commonly used antihypertensives, may cause QT interval (QT) prolongation, a risk factor for highly fatal and difficult to predict ventricular arrhythmias. We examined whether common single-nucleotide polymorphisms (SNPs) modified the association between thiazide use and QT or its component parts (QRS interval, JT interval) by performing ancestry-specific, transethnic and cross-phenotype genome-wide analyses of European (66%), African American (15%) and Hispanic (19%) populations (N = 78 199), leveraging longitudinal data, incorporating corrected standard errors to account for underestimation of interaction estimate variances and evaluating evidence for pathway enrichment. Although no loci achieved genome-wide significance (P < 5 x 10(-8)), we found suggestive evidence (P < 5 x 10(-6)) for SNPs modifying the thiazide-QT association at 22 loci, including ion transport loci (for example, NELL1, KCNQ3). The biologic plausibility of our suggestive results and simulations demonstrating modest power to detect interaction effects at genome-wide significant levels indicate that larger studies and innovative statistical methods are warranted in future efforts evaluating thiazide-SNP interactions

    Cromoglycate, not ketotifen, ameliorated the injured effect of warm ischemia/reperfusion in rat liver: role of mast cell degranulation, oxidative stress, proinflammatory cytokine, and inducible nitric oxide synthase

    No full text
    Nagla A El-Shitany,1,2 Karema El-Desoky3 1Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt; 3Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt Abstract: Hepatic ischemia/reperfusion (ISCH/REP) is a major clinical problem that is considered to be the most common cause of postoperative liver failure. Recently, mast cells have been proposed to play an important role in the pathophysiology of ISCH/REP in many organs. In contrast, the role played by mast cells during ISCH/REP-induced liver damage has remained an issue of debate. This study aimed to investigate the protective role of mast cells in order to search for an effective therapeutic agent that could protect against fatal ISCH/REP-induced liver damage. A model of warm ISCH/REP was induced in the liver of rats. Four groups of rats were used in this study: Group I: SHAM (normal saline, intravenously [iv]); Group II: ISCH/REP; Group III: sodium cromoglycate + ISCH/REP (CROM + ISCH/REP), and Group IV: ketotifen (KET) + ISCH/REP (KET + ISCH/REP). Liver damage was assessed both histopathologically and biochemically. Mast cell degranulation was assessed histochemically. Lipid peroxidation (malondialdehyde [MDA]) as well as the levels of glutathione (GSH), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-&alpha;), the formation of nitric oxide (NO), and the expression of inducible NO synthase (iNOS) were determined. The results of this study revealed increased mast cell degranulation in the liver during the acute phase of ISCH/REP. Moreover, CROM, but not KET, decreased the activity of alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase and maintained normal liver tissue histology. Both CROM and KET protected against mast cell degranulation in the liver. In addition, both CROM and KET decreased IL-6 and TNF-&alpha;. However, CROM, but not KET, decreased MDA formation and increased GSH. Furthermore, KET, but not CROM, increased both NO formation and iNOS expression. In conclusion, this study clearly demonstrated mast cell degranulation in warm ISCH/REP in the liver of rats. More importantly, CROM, but not KET, ameliorated the effect of ISCH/REP-induced injury in rat liver. CROM may protect the liver through mast cell stabilization, inhibition of TNF-&alpha;, IL-6, MDA, and iNOS and increased GSH. KET may maintain ISCH/REP-induced liver injury through the NO/iNOS pathway. Keywords: ischemia/reperfusion, mast cells, liver, sodium cromoglycate, ketotifen, nitric oxide, inducible nitric oxide synthas
    corecore