155 research outputs found

    Local interfacial structure influences charge localization in titania composites: Beyond the band alignment paradigm

    Get PDF
    The phase junction of nanocomposite materials is key to enhanced performance but is largely ignored in recent theoretical examinations of photocatalytic interactions in titania-based composites. Computational advances now allow more precise modeling of the electronic and optical properties of composites, and focusing on mixed-phase TiO2 as a model, we use density functional theory (DFT) to interrogate the essential structural feature, namely, the rutile anatase interface, and its relationship to photogenerated charge localization, bulk band alignments, and defect formation. The interfacial region is disordered and distinct from rutile and anatase and contains low coordinated Ti sites and oxygen vacancies, both drivers of charge localization. The relaxations of the interface upon formation of excited electrons and holes determine the final location of charges which cannot always be predicted from bulk band alignments. A detailed understanding of the interfacial phase junction lays the foundation for directed synthesis of highly active and efficient composite photocatalysts

    Kinetic Monte Carlo Simulations of a Model for Heat-assisted Magnetization Reversal in Ultrathin Films

    Full text link
    To develop practically useful systems for ultra-high-density information recording with densities above terabits/cm2^2, it is necessary to simultaneously achieve high thermal stability at room temperature and high recording rates. One method that has been proposed to reach this goal is heat-assisted magnetization reversal (HAMR). In this method, one applies a high-coercivity material, whose coercivity is temporarily lowered during the writing process through localized heating. Here we present kinetic Monte Carlo simulations of a model of HAMR for ultrathin films, in which the temperature in the central part of the film is momentarily increased above the critical temperature, for example by a laser pulse. We observe that the speed-up achieved by this method, relative to the switching time at a constant, subcritical temperature, is optimal for an intermediate strength of the writing field. This effect is explained using the theory of nucleation-induced magnetization switching in finite systems. Our results should be particularly relevant to recording media with strong perpendicular anisotropy, such as ultrathin Co/Pt or Co/Pd multilayers.Comment: 8 pp., 7 fig

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Putting ourselves in another’s skin: using the plasticity of self-perception to enhance empathy and decrease prejudice

    Get PDF
    The self is one the most important concepts in social cognition and plays a crucial role in determining questions such as which social groups we view ourselves as belonging to and how we relate to others. In the past decade, the self has also become an important topic within cognitive neuroscience with an explosion in the number of studies seeking to understand how different aspects of the self are represented within the brain. In this paper, we first outline the recent research on the neurocognitive basis of the self and highlight a key distinction between two forms of self-representation. The first is the “bodily” self, which is thought to be the basis of subjective experience and is grounded in the processing of sensorimotor signals. The second is the “conceptual” self, which develops through our interactions of other and is formed of a rich network of associative and semantic information. We then investigate how both the bodily and conceptual self are related to social cognition with an emphasis on how self-representations are involved in the processing and creation of prejudice. We then highlight new research demonstrating that the bodily and conceptual self are both malleable and that this malleability can be harnessed in order to achieve a reduction in social prejudice. In particular, we will outline strong evidence that modulating people’s perceptions of the bodily self can lead to changes in attitudes at the conceptual level. We will highlight a series of studies demonstrating that social attitudes towards various social out-groups (e.g. racial groups) can lead to a reduction in prejudice towards that group. Finally, we seek to place these findings in a broader social context by considering how innovations in virtual reality technology can allow experiences of taking on another’s identity are likely to become both more commonplace and more convincing in the future and the various opportunities and risks associated with using such technology to reduce prejudice

    Lifting the Pt{100} Surface Reconstruction Through Oxygen Adsorption: A DFT Analysis

    No full text
    The adsorption of atomic oxygen on unreconstructed Pt{100}-(1×1) role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3ePt{100}-(1×1)Pt{100}-(1×1) and reconstructedPt{100}-(5×1) role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3ePt{100}-(5×1)Pt{100}-(5×1) was modeled using density-functional theory in an attempt to understand the relative stability of the unreconstructed phase as a function of oxygen coverage. Our calculations showed that at zero temperature the (5×1) role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3e(5×1)(5×1) is more stable than the unreconstructed (1×1) role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3e(1×1)(1×1) phase at zero oxygen coverage. However, oxygen absorption on the Pt{100}-(5×1) role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3ePt{100}-(5×1)Pt{100}-(5×1) phase removed the reconstruction, reversing the phase stability. Using thermochemical analysis, we show desorption of oxygen corresponding to a temperature near 730 K, consistent with experimentally observed desorption peaks for oxygen covered (1×1) role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3e(1×1)(1×1)surfaces. These results have ramifications for understanding the full Pt{100}(1×1)→Pt{100} role= presentation style= box-sizing: border-box; display: inline; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(51, 51, 51); font-family: Arial, sans-serif; position: relative; \u3ePt{100}(1×1)→Pt{100}Pt{100}(1×1)→Pt{100}-hex-R0.7° surface phase transition
    • …
    corecore