201 research outputs found

    Renalase Gene Polymorphisms in Patients With Type 2 Diabetes, Hypertension and Stroke

    Get PDF
    Renalase is a novel, recently identified, flavin adenine dinucleotide-dependent amine oxidase. It is secreted by the kidney and metabolizes circulating catecholamines. Renalase has significant hemodynamic effects, therefore it is likely to participate in the regulation of cardiovascular function.The aim of our study was to investigate the involvement of renalase gene polymorphisms in hypertension in type 2 diabetes patients. A total of 892 patients and 400 controls were genotyped with three SNPs in the renalase gene. The C allele of rs2296545 SNP was associated with hypertension (P < 0.01). For rs2576178 SNP, frequencies in hypertensive patients differed from controls, but not from normotensive patients. For rs10887800 SNP, the differences in the G allele frequencies were observed in hypertensive patients with stroke, with 66% of patients being GG homozygotes. To confirm observed association we later genotyped 130 stroke patients without diabetes. The OR for risk allele was 1.79 (95% CI 1.33–2.41). In conclusion, the renalase gene polymorphism was associated with hypertension in type 2 diabetes patients. The most interesting result is a strong association of the rs10887800 polymorphism with stroke in patients with and without diabetes. The G allele of this polymorphism might thus be useful in identifying diabetes patients at increased risk of stroke

    4D monitoring of active sinkholes with a Terrestrial Laser Scanner (TLS): A Case study in the evaporite karst of the Ebro Valley, NE Spain

    Get PDF
    This work explores, for the first time, the application of a Terrestrial Laser Scanner (TLS) and a comparison of point clouds in the 4D monitoring of active sinkholes. The approach is tested in three highly-active sinkholes related to the dissolution of salt-bearing evaporites overlain by unconsolidated alluvium. The sinkholes are located in urbanized areas and have caused severe damage to critical infrastructure (flood-control dike, a major highway). The 3D displacement models derived from the comparison of point clouds with exceptionally high spatial resolution allow complex spatial and temporal subsidence patterns within one of the sinkholes to be resolved. Detected changes in the subsidence activity (e.g., sinkhole expansion, translation of the maximum subsidence zone, development of incipient secondary collapses) are related to potential controlling factors such as floods, water table changes or remedial measures. In contrast, with detailed mapping and high-precision leveling, the displacement models, covering a relatively short time span of around 6 months, do not capture the subtle subsidence (< 0.6-1 cm) that affects the marginal zones of the sinkholes, precluding precise mapping of the edges of the subsidence areas. However, the performance of TLS can be adversely affected by some methodological limitations and local conditions: (1) limited accuracy in large investigation areas that require the acquisition of a high number of scans, increasing the registration error; (2) surface changes unrelated to sinkhole activity (e.g., vegetation, loose material); (3) traffic-related vibrations and wind blast that affect the stability of the scanner

    Physical activity, black carbon exposure and airway inflammation in an urban adolescent cohort

    Get PDF
    Objective Regular physical activity can improve cardiopulmonary health; however, increased respiratory rates and tidal volumes during activity may increase the effective internal dose of air pollution exposure. Our objective was to investigate the impact of black carbon (BC) measured by personal sampler on the relationship between physical activity and fractional exhaled nitric oxide (FeNO), a marker of airway inflammation. We hypothesized that higher personal BC would attenuate the protective effect of physical activity on airway inflammation. Methods We performed a cross-sectional study nested in a birth cohort of African American and Dominican children living in the Bronx and Northern Manhattan, New York City. Children were recruited based on age (target 9–14 year olds) and presence (n=70) or absence (n=59) of current asthma. Children wore wrist mounted accelerometers for 6 days and were classified as ‘active’ if they had ≥60 min of moderate-to-vigorous activity (MVA) each day and ‘non-active’ if they had <60 min of MVA on any given day, based on CDC guidelines. Personal BC measured using a MicroAeth, was assessed during two 24-h periods, at the beginning and end of physical activity assessment. High BC was defined as the upper tertile of BC measured with personal sampler. FeNO measurements were sampled at the beginning and end of the of physical activity assessment. Results In multivariable linear regression models, ‘active’ children had 25% higher personal BC concentrations (p=0.02) and 20% lower FeNO (p=0.04) compared to ‘non-active’ children. Among children with high personal BC (n=33), there was no relationship between activity and FeNO (p=1.00). The significant protective relationship between activity and airway inflammation was largely driven by children with lower personal BC (n=96, p=0.04). Conclusions Children that live in an urban environment and are physically active on a daily basis have higher personal exposure to BC. High BC offsets the protective relationship between physical activity and airway inflammation

    A Functional Polymorphism in Renalase (Glu37Asp) Is Associated with Cardiac Hypertrophy, Dysfunction, and Ischemia: Data from the Heart and Soul Study

    Get PDF
    Renalase is a soluble enzyme that metabolizes circulating catecholamines. A common missense polymorphism in the flavin-adenine dinucleotide-binding domain of human renalase (Glu37Asp) has recently been described. The association of this polymorphism with cardiac structure, function, and ischemia has not previously been reported.We genotyped the rs2296545 single-nucleotide polymorphism (Glu37Asp) in 590 Caucasian individuals and performed resting and stress echocardiography. Logistic regression was used to examine the associations of the Glu37Asp polymorphism (C allele) with cardiac hypertrophy (LV mass>100 g/m2), systolic dysfunction (LVEF<50%), diastolic dysfunction, poor treadmill exercise capacity (METS<5) and inducible ischemia.Compared with the 406 participants who had GG or CG genotypes, the 184 participants with the CC genotype had increased odds of left ventricular hypertrophy (OR = 1.43; 95% CI 0.99-2.06), systolic dysfunction (OR = 1.72; 95% CI 1.01-2.94), diastolic dysfunction (OR = 1.75; 95% CI 1.05-2.93), poor exercise capacity (OR = 1.61; 95% CI 1.05-2.47), and inducible ischemia (OR = 1.49, 95% CI 0.99-2.24). The Glu37Asp (CC genotype) caused a 24-fold decrease in affinity for NADH and a 2.3-fold reduction in maximal renalase enzymatic activity.A functional missense polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, ventricular dysfunction, poor exercise capacity, and inducible ischemia in persons with stable coronary artery disease. Further studies investigating the therapeutic implications of this polymorphism should be considered

    An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model

    Get PDF
    Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources

    Acceptability, feasibility, drug safety, and effectiveness of a pilot mass drug administration with a single round of sulfadoxine-pyrimethamine plus primaquine and indoor residual spraying in communities with malaria transmission in Haiti, 2018

    Get PDF
    For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness

    Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization

    Get PDF
    Background Asthma gene DNA methylation may underlie the effects of air pollution on airway inflammation. However, the temporality and individual susceptibility to environmental epigenetic regulation of asthma has not been fully elucidated. Our objective was to determine the timeline of black carbon (BC) exposure, measured by personal sampling, on DNA methylation of allergic asthma genes 5 days later to capture usual weather variations and differences related to changes in behavior and activities. We also sought to determine how methylation may vary by seroatopy and cockroach sensitization and by elevated fractional exhaled nitric oxide (FeNO). Methods Personal BC levels were measured during two 24-h periods over a 6-day sampling period in 163 New York City children (age 9–14 years), repeated 6 months later. During home visits, buccal cells were collected as noninvasive surrogates for lower airway epithelial cells and FeNO measured as an indicator of airway inflammation. CpG promoter loci of allergic asthma genes (e.g., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A)), arginase 2 (ARG2)) were pyrosequenced at the start and end of each sampling period. Results Higher levels of BC were associated with lower methylation of IL4 promoter CpG−48 5 days later. The magnitude of association between BC exposure and demethylation of IL4 CpG−48 and NOS2A CpG+5099 measured 5 days later appeared to be greater among seroatopic children, especially those sensitized to cockroach allergens (RR [95% CI] 0.55 [0.37–0.82] and 0.67 [0.45–0.98] for IL4 CpG−48 and NOS2A CpG+5099, respectively), compared to non-sensitized children (RR [95% CI] 0.87 [0.65–1.17] and 0.95 [0.69–1.33] for IL4 CpG−48 and NOS2A CpG+5099, respectively); however, the difference was not statistically different. In multivariable linear regression models, lower DNA methylation of IL4 CpG−48 and NOS2A CpG+5099 were associated with increased FeNO. Conclusions Our results suggest that exposure to BC may exert asthma proinflammatory gene demethylation 5 days later that in turn may link to airway inflammation. Our results further suggest that seroatopic children, especially those sensitized to cockroach allergens, may be more susceptible to the effect of acute BC exposure on epigenetic changes
    corecore