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Abstract 

Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance 
preparation and large‑scale, coordinated response. Here, we developed a machine learning predictive model of dis‑
ease severity and length of hospitalization for COVID‑19, which can be utilized as a platform for future unknown 
viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID‑19 patients (n = 111) 
during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient 
triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed 
that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker 
with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error  (R2 = 0.9765) 
and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report 
a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were 
intubated. Furthermore, 5‑hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID‑
19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly iden‑
tify which patients will develop life‑threatening illness would allow the efficient allocation of medical resources 
and implementation of the most effective medical interventions. We would advocate that the same approach could 
be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes 
while optimizing healthcare resources.
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Introduction
Most human coronavirus (CoV) infections result in 
mild patient symptoms. However, the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) distinguishes itself from other CoVs in having 
led to more than 6.7 million deaths according to WHO 
(up to 23, January 2023. The outbreak of SARS-CoV-2 
remains an on-going global pandemic. Elderly patients 
with underlying chronic diseases are considered at 
high risk for death from COVID-19, the disease caused 
by SARS-CoV-2, and younger people without major 
underlying diseases may also present with lethal com-
plications [1].

Although vaccines appear to be safe and effective in pre-
venting severe COVID-19 symptoms and death, the clini-
cal management of COVID-19 patients continues to pose 
an enormous economic burden to the health system [2]. 
Patients with COVID-19 present a broad spectrum of symp-
toms ranging from asymptomatic to mild respiratory tract 
infections and influenza-like illness to severe disease with 
accompanying lung injury, multiorgan failure, and death [3]. 
Hypoxemia is a main marker of severity [4]. Although the 
lungs are believed to be the site at which SARS-CoV-2 rep-
licates, infected patients often report other symptoms, sug-
gesting the involvement of the gastrointestinal tract, heart, 
cardiovascular system, kidneys, and other organs [5].

Several studies have attempted to classify COVID-19 
patients’ symptoms based on their clinical phenotypes [4, 
6–8]. However, the heterogeneity in patient medical histories 
and COVID-19 symptoms have prevented the establishment 
of concrete classifications that can predict patient outcomes, 
i.e., who might need hospital admission or closer monitor-
ing while in hospital. Being able to predict which patients can 
be sent home and those possibly needing intensive care unit 
(ICU) admission is critical to hospital administrators and 
health officials as they seek to implement interventions that 
optimize health outcomes for each COVID-19 patient and 
effectively utilize available hospital resources.

Using machine learning (ML), we built a model of 
COVID-19 disease severity and prediction of hospi-
talization duration based on clinical data and the meta-
bolic profiles of plasma samples collected from patients 
during hospitalization. The model led us to identify a 
panel of unique clinical and metabolite biomarkers that 
were highly indicative of disease progression and allows 
the prediction of patient management needs very soon 
after hospital admission.

Results
Demographic data
The clinical cohort used in this study consisted of 
431 participants, of whom 111 were considered 

SARS-CoV-2-positive upon admission in the Yale 
New Haven Hospital (YNHH). The remaining 324 
participants were health care workers (HCW) healthy 
controls who were SARS-CoV-2-negative (Table  1). 
In sample collection, 131 of the samples from SARS-
CoV-2-positive patients were collected from the same 
patient during their stay in the hospital. The SARS-
CoV2 infection status of each study participant was 
confirmed by nasopharyngeal swab sample polymer-
ase chain reaction (PCR) test. SARS-CoV-2-infected 
patients were arbitrarily divided into different classes 
based on their treatment needs during hospitaliza-
tion as follows: classes 1 (patients who did not require 
any external oxygen supply), 2 (patients who required 
low or high flow oxygen supply), and 3 (patients who 
required positive airway pressure (biphasic; BIPAP or 
continuous; CPAP) or were intubated).

The SARS-CoV2-infected cohort included a similar 
proportion of male and female patients (51.4 vs. 48.6%) 
(Table 1), and 52.3% were White/Caucasian, 33.3% Black/
African American, 1.8% Asian, patients of other race 
were 11.7% and unknown 0.9%. For the healthy control 
group, 78.1% were female, 75% were White/Caucasian, 
3.7% Black/African American, 7.4% Asian, other race 
4.9% and unknown 9%. The mean (± SD) body mass index 
(BMI) and ages of the SARS-CoV2-infected cohort were 
30.9 (± 8.9) kg/m2 and 60.2 ± 18.2 years of age, while the 
control cohort was at 26.2 ± 5.5 kg/m2 and 30.9 ± 8.9 years 
of age, respectively (Table  1). All SARS-CoV2-infected 
patients were admitted to the hospital.

Untargeted metabolomics analyses between all 
SARS‑CoV‑2‑infected patients and healthy controls
Untargeted metabolomics was performed in plasma sam-
ples to elucidate whether SARS-CoV-2 infection caused 
changes in the plasma metabolic profiles of SARS-CoV-2 
positive patients admitted to hospital. Comprehensive 
profiles were acquired and a total of 82 features were 
detected. Partial least square-discriminant analysis (PLS-
DA) of the metabolomics data showed good separation of 
the metabolic profiles between the SARS-CoV-2-positive 
patients and the healthy controls (Additional file 1: Figure 
S1A). Multifactorial analyses revealed metabolite differ-
ences between all of the SARS-CoV-2-positive patients 
(class 1, 2, and 3) and the SARS-CoV-2-negative controls 
(HCW). Of these metabolites, picolinate was the metab-
olite that best predicted an individual infected by SARS-
CoV-2, i.e., increased plasma levels occurred in infected 
patients (Fig.  1A, C, Additional file  1: Fig. S1B, D). By 
contrast, tryptophan was the plasma metabolite found 
to be associated with SARS-CoV-2-negative individuals 
(Fig. 1A, B, Additional file 1: Fig. S1B, E). Although many 
factors can cause variation in the plasma metabolome 
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of the SARS-CoV-2-positive patients (e.g., underlying 
diseases, age, severity of COVID-19), the test samples 
showed similar parameters as the training set used in the 
PLS-DA model and were classified correctly as SARS-
CoV-2-positive individuals (Additional file  1: Figure 
S1C). Multivariate and univariate analyses showed differ-
ences in the plasma metabolome between the two classes 
(uninfected vs. infected). The effect of the two most sig-
nificant metabolites (picolinate and tryptophan) on the 
overall impact of SARS-CoV-2 infection and the estima-
tion of probability values (which is discrimination crite-
ria between SARS-CoV-2-positive and negative cases) 
is depicted in Additional file 1: Figures S1D, E. Receiver 
operating characteristic (ROC) curves were calculated 

for both the training and test sets and resulted in an area 
under curve value of 1.00. This demonstrates the robust-
ness of the PLS-DA model and its applicability to the 
accurate discrimination between SARS-CoV-2-negative 
and SARS-CoV-2-infected individuals.

Pathway analysis revealed metabolites changed 
in SARS-CoV-2-infected patients being involved in 
the purine salvage pathway. Plasma levels of inosine 
monophosphate, inosine or uric acid were not different 
between the healthy control and SARS-CoV-2-infected 
groups. However, hypoxanthine and xanthine were 
increased in SARS-CoV-2-infected patients (Figs. 1D, 2A) 
and univariate analysis also revealed significant changes 
for each class individually when compared to uninfected 

Table 1 Demographics and baseline characteristics of SARS‑CoV‑2‑negative (uninfected) and ‑positive (infected) subjects

a Healthy healthcare workers (HCWs, control).
b SARS-CoV-2-infected patients who during their hospitalization did not require any external oxygen supply.
c SARS-CoV-2-infected patients who required low or high flow oxygen supply.
d SARS-CoV-2-infected patients who required positive airway pressure (biphasic; BIPAP or continuous; CPAP) or were intubated.

Variables SARS‑CoV‑2‑negative 
subjects

SARS‑CoV‑2‑positive subjects

HCWa 
Healthy Control
(N = 324)

Total
(N = 111)

Class  1b

(N = 29)
Class  2c

(N = 62)
Class  3d

(N = 20)

Sex‑no. (%)

 Male 21.9 51.4 34.5 53.2 70.0

 Female 78.1 48.6 65.5 46.8 30.0

Race (%)

White/Caucasian 75.0 52.3 69.0 51.6 30.0

Black/African American 3.7 33.3 24.1 32.3 50.0

Asian 7.4 1.8 0.0 3.2 0.0

Other 4.9 11.7 6.9 12.9 15.0

Unknown 9.0 0.9 0.0 0.0 5.0

Ethnicity (%)

 Non‑hispanic 80.6 82.0 79.3 83.9 80.0

 Hispanic or Latino 8.6 17.1 20.7 16.1 15.0

 Unknown 10.8 0.9 0.0 0.9 5.0

Age‑year

 Mean (SD) 37.7 (11.4) 60.2 (18.2) 53.1 (18.8) 63.9 (16.8) 59.1 (19.1)

 BMI (kg/m2)

 Mean (SD) 26.2 (5.5) 30.9 (8.9) 27.8 (7.5) 30.3 (8.5) 36.9 (9.7)

Time from admission to first positive PCR (days) (negative means PCR test prior to admission)

 Mean (SD) N/A −2.0 (7.9) −5.0 (13.0) −0.2 (3.9) −3.3 (7.4)

Time from admission to advanced oxygen (days)

 Mean (SD) N/A N/A N/A N/A 3.4 (7.3)

Length of stay (days)

 Mean (SD) N/A 14.2 (15.3) 6.3 (6.9) 14.6(16.1) 24.5 (15.8)

SPO2_24_hours_mean

 Mean (SD) N/A 96.3 (1.7) 97.5 (1.3) 95.9 (1.5) 95.8 (1.9)

 Survival (%) 100.0 93.7 100.0 100.0 65.0
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controls (Fig. 2). Similarly, allantoin, a metabolite derived 
from uric acid and reactive oxygen species [9], was higher 
in the SARS-CoV-2-infected patient group (Fig.  1A–D); 
however univariate analysis for the individual classes, 
revealed allantoin to be increased in classes 1 and 2 but 
not in class 3 patients when compared to uninfected con-
trols (Fig. 2A).

The tryptophan metabolism pathway was also com-
prehensively characterized in the present study. In the 
SARS-CoV-2-infected patient group, plasma levels of 
tryptophan were decreased, while levels of 5-hydroxy-
tryptophan and kynurenine were increased (Fig.  1B). 
By contrast, serotonin levels were decreased (Fig. 1B) in 
the SARS-CoV-2-infected group. Given that 5-hydroxy-
tryptophan availability is the rate-limiting step in sero-
tonin synthesis [10], the decreased serotonin levels 
observed in SARS-CoV-2-infected patients are unex-
pected. It is possible that SARS-CoV-2 infection may 
decrease plasma serotonin levels by reducing its syn-
thesis from 5-hydroxy-tryptophan (e.g., by decreased 
expression or activity of aromatic L-amino acid decar-
boxylase (AAAD)), increasing its cellular uptake (e.g., by 
upregulation of the serotonin reuptake transporter) and/
or increasing its metabolism (e.g., by increased activ-
ity or expression of metabolic enzymes, such as mono-
amine oxidase or carboxypeptidase A3). Which of these 
possibilities underlies the current observation remains 
to be established. Levels of kynurenine metabolites var-
ied in SARS-CoV-2-infected patients in a manner that 
appeared to vary by pathway. Specifically, increased lev-
els of kynurenic acid, picolinate and quinolonic acid 
occurred in the plasma of SARS-CoV-2-infected patients 
[11]. Notably, reduced levels of anthranillic acid and xan-
thurenic acid occurred in these same patients (Fig.  1E). 
Glucuronate plasma levels were increased in the SARS-
CoV-2-infected patient group and levels of paraxanthine, 

a caffeine metabolism-related metabolite, were decreased 
in the SARS-CoV-2-infected patient group (Figs.  1D, 
2). Univariate analysis of only the metabolome revealed 
thirty-four metabolites that were different in SARS-
CoV-2 infected patients who survived compared to those 
who did not survive. Amongst them are metabolites that 
showed up in the pathway analysis (such as paraxanthine, 
tryptophan, and glucuronate) and new ones including 
norvaline, cyclic-AMP and theobromine (Fig. 2B).

Machine learning: combined clinical, comorbidity 
and metabolomics data improved the prediction model
Initially, the analysis was performed using only patient 
clinical data during hospitalization (Additional file  1: 
Table S1) and comorbidities upon admission (Additional 
file 1: Table S2), an approach that resulted in lower total 
accuracy for the external data set (test set) (Additional 
file 1: Figure S2A, C). The combined clinical, comorbid-
ity and metabolomics data improved the prediction accu-
racy of the model (Additional file 1: Figure S2B, D) from 
0.916 to 0.954 and 0.938 to 0.953 (in case of intubation 
risk of classes 1 vs 2 and 2 vs 3, respectively). When mod-
elling factors influencing the length of hospitalization, 
removal of metabolomic data decreased the squared cor-
relation coefficient from 0.976 to 0.956. This supports the 
value of using combinatorial data instead of individual 
datasets (metabolomics versus clinical and comorbidity 
data). In our analyses, we used training data (which was 
a subset of 80% of the total dataset) to train the machine 
learning model, and testing data set (a subset of 20% of 
the total dataset) to independently evaluate the accuracy 
of the model. In these analyses, a DUPLEX algorithm 
[12] was used to select the cases in the test set because 
the selected cases had to be representative of training 
data for unbiased accuracy estimation.

Fig. 1 Plasma metabolome differences in SARS‑CoV‑2‑infected and uninfected subjects. Order of importance of individual metabolites (in 
PLS‑DA model) in SARS‑CoV‑2‑uninfected (healthy control, orange bar) and SARS‑CoV‑2‑infected (blue bar) subjects. A The four metabolites 
most significantly down‑regulated in infected patients (relative to uninfected subjects). B The four most significant metabolites up‑regulated 
in infected patients (red symbol) relative to uninfected subjects (black symbols). C Metabolic pathways identified by untargeted metabolomics 
in the plasma of SARS‑CoV‑2‑uninfected subjects (black symbols) and SARS‑CoV‑2‑infected patients (red symbols). D Purine metabolism: adenosine 
monophosphate can be converted to inosine either by (i) deamination to form inosine monophosphate followed by dephosphorylation or (ii) 
dephosphorylation to form adenosine followed by deamination. Hypoxanthine, formed from inosine, can undergo oxidative hydroxylation 
to xanthine which can then be converted by xanthine oxidase to uric acid. Allantoin is formed from the reaction between uric acid and reactive 
oxygen species (ROS). E Tryptophan metabolism: In the kynurenine pathway (which accounts for ~ 95% of tryptophan degradation), tryptophan 
forms kynurenine (by tryptophan‑2,3‑dioxygenase (TDO) or indoleamine 2,3‑dioxygenase (IDO)). Kynurenine can then undergo hydroxylation 
to 3‑hydroxy kynurenine (by kynurenine 3‑monooxygenase (KMO)). A minor degradation pathway involves tryptophan hydroxylation 
to 5‑hydroxy‑tryptophan (by tryptophan hydroxylase isoforms 1 and 2 (TPH1/2)) and then to serotonin and melatonin (by aromatic‑L‑amino‑acid 
decarboxylase (AAAD)). In figures B–E, data are presented as the mean ± SD and each dot represents individual sample results. Dots outside the box 
plot are in the upper quartile (75th percentile) of the distribution and the dots inside the box plot are in the interquartile range (IQR), where 50% 
of the data are located. Outside the box plot are the patients that are outside the IQR range. The box plot is divided at the median. Probability values 
reflect results in SARS‑CoV‑2‑infected patients being compared with uninfected subjects using a Student’s unpaired t‑test

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Clinical decision tree analysis: estimation of survival 
or mortality during hospitalization
A clinical decision tree (DT) approach was developed 
from clinical and comorbidity data obtained during the 
SARS-CoV-2-infected patient’s hospital admission for 
the purpose of predicting the hospital death or survival 
(discharge disposition) of SARS-CoV-2-infected patients 
(Fig.  3A). The ROC curve for the training and test sets 
had accuracies of 0.974 and 0.926, respectively (Fig. 3B, 
C). The clinical DT has an internal feature selection 
method that includes factors that result in the lowest 
error towards estimation of discharge disposition. From 
both metabolomics and clinical data, clinical data were 
found to be sufficient to estimate the possibility of death 
or a survival event after SARS-CoV-2 infection at an early 
stage. Albumin was the initial determinant factor in the 
DT. If the albumin level is > 2.7 g/dL (normal range 3.5–
5.5 g/dL) [13], then the blood urea nitrogen (BUN) should 
be considered. If BUN > 97  mg/dL (i.e., close to 5 times 
higher than the upper normal range of 20  mg/dL) [13], 
the clinical DT predicts that the patient will not survive 
(death). If the BUN < 97 mg/dL, the percentage of blood 
eosinophils (EOS) should be considered. If the EOS > 3.7, 
the clinical DT predicts that the patient would not sur-
vive; if the EOS < 3.7, the patient is predicted to survive. 
If the albumin level < 2.7  g/dL, then the globulin level 
should be evaluated. If globulin ≥ 3.7 g/dL, the patient is 
predicted not to survive; if globulin < 3.7  g/dL, the lym-
phocytes need to be determined to evaluate the discharge 
disposition of the patient. If lymphocytes ≥ 2.1%, the 
patient is predicted to survive; if lymphocytes < 2.1%, the 
patient is predicted not to survive (death).

Prediction of duration of hospitalization
Through the application of machine learning analysis and 
the Random Forest (RF) regression to clinical, plasma 
metabolomics and comorbidity data, which we obtained 
during the hospitalization, the length of hospitalization 
of each SARS-CoV-2-infected patient admitted to the 
hospital was estimated. These estimates were found to 
be very accurate (i.e., with only few days of actual hos-
pitalization duration), as shown in Fig. 4A  (R2 = 0.9765). 
The error associated with more than 60% (≈ 1.5 sigma) 
of the data is within 3 to 5  days (Fig.  4B, C), indicating 

that the acceptable error window is ± 5  days. The forty 
most important factors in the structure of the RF model 
are depicted in Fig.  4D. Respiration (RR) was the most 
important factor contributing to the longer hospitaliza-
tion of the patient. In the SARS-CoV-2-infected patient 
cohort, 73% had a RR above the normal of 18 breaths/
min. Minimum blood urea nitrogen (BUN), a serum 
byproduct of protein metabolism, was the second criti-
cal clinical factor contributing to a prolonged hospi-
talization. Normal BUN ranges from 5 to 20 mg/dL [14] 
and in our cohort, 37% patients had BUN > 20  mg/dL. 
Considering the Shapley Additive exPlanations (SHAP) 
values between factors for patients with least and maxi-
mum duration of hospitalization (SARS-CoV-2-infected 
patient, patients #123 and #213 with 90- and 2-days 
duration of hospitalization, respectively), it can be con-
cluded that simultaneous increases in BUN and RR val-
ues causes the duration of hospitalization to be increased 
(Additional file 1: Figure S3). Nevertheless, the cumula-
tive effects of other factors apart from BUN and RR are 
essential to RF model to accurately estimate the duration 
of hospitalization. For example, for patient cases #123 
and #213, excluding the other 508 factors can cause up 
to 20 and 8 days shifts in the outcome (Additional file 1: 
Figure S3). As expected, temperature was a factor to con-
sider. Upon hospital admission, 36% SARS-CoV-2-in-
fected patients had RBC < 4.0 million cells/μL (males and 
females; lower end of normal range for females [15]), 46% 
patients had HGB < 12  g/dL (males and females; lower 
end of normal range for females [15]). In 18.5% patients, 
PLT was lower than 150 (normal range: 150–400 ×  109/L 
[15]) and 44% had monocytes (differential, %) higher 
than 7% (normal range: 3–7%, [15],). Peritonitis and 
intestinal abscess were an underlying condition that was 
associated with prolonged hospitalization. Upon admis-
sion, only one patient had peritonitis/intestinal abscess, 
was hospitalized for nine days, intubated, and did not 
survive. During the present study, three more patients 
developed peritonitis/intestinal abscess. Of them, one 
patient stayed in the hospital for forty days, was intu-
bated, and did not survive; the two other patients had 
a prolonged hospital stay for 77 and 90 days, both were 
intubated and survived. Fifty-nine (SARS-CoV-2-infected 
patients were male, and BMI data were obtained from 

(See figure on next page.)
Fig. 2 Untargeted plasma metabolomics analyses of SARS‑CoV‑2‑infected and uninfected subjects. A Results of univariate analysis 
of the metabolites are shown for SARS‑CoV‑2‑negative subjects (HCW black square), SARS‑CoV‑2‑positive patients who during their hospitalization 
did not require any external oxygen supply or required only a low flow of oxygen (Class 1, red square), SARS‑CoV‑2‑positive patients who 
required a high flow of oxygen (Class 2, green square), and SARS‑CoV‑2‑positive patients who needed positive airway pressure (biphasic; BIPAP 
or continuous; CPAP) or were intubated (Class 3, blue square). B Univariate analysis of the identified metabolites in the plasma showing differences 
in the metabolome between SARS‑Cov‑2 infected patients who survived (black square) and those who did not survive (red square). Data are 
presented as the mean ± SD; dots outside the box plot are in the upper quartile (75th percentile) of the distribution and the dots inside the box 
plot are in the interquartile range (IQR), where 50% of the data are located. Outside the box plot are the patients that are outside the IQR range, 
and the box plot is divided at the median. Student’s unpaired t‑test, NS (non‑significant)  (color figure online)
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Fig. 2 (See legend on previous page.)
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fifty of them. Their mean BMI was 31.73 (8.62 SD) kg/
m2 with six being in the healthy range (18–24.9 kg/m2). 
Of the fifty-six (SARS-CoV-2-infected female patients, 
BMI data were obtained from forty-seven. Their BMI was 
30.77 (8.86 SD) kg/m2, with 25 being in the healthy range 
(25.0–29.9). Liver function tests (including aspartate 
aminotransferase (AST) and albumin) contributed to the 
estimation of the length of hospitalization. Sixty-three 
percent of the SARS-CoV-2-infected patients had AST 
values above the upper limit of normal (8-33U/L) [16], 
the albumin levels of 17% patients were lower than the 
lower limit of normal (3.5–5 g/dL) [17]. Lactate levels also 
contributed to estimation of the length of hospitaliza-
tion, even though only 9 of 75 patients had hyperlactemia 

(lactate ≥ 2  mmol/L) [18] and we did not have data for 
40 of the 111 patients. Systolic blood pressure data was 
available for 111 patients and 68 were found to have pres-
sures exceeding 120  mmHg. The metabolites predicted 
by the model to be contributing to duration of hospital-
ization were (i) theobromine (a xanthine alkaloid and a 
product of caffeine metabolism) [19], (ii) glucuronic acid 
(a key metabolite of glucose involved in the detoxification 
of xenobiotic compounds which is produced in the liver) 
[20], (iii) paraxanthine (a metabolite of caffeine), and (iv) 
allantoin (a biomarker of oxidative stress in humans as 
the main product of uric acid oxidation by reactive oxy-
gen species) [21] (Fig. 4D).

Fig. 3 Clinical decision tree (DT). A clinical DT model predicting the discharge disposition of a patient (survival or death) was developed. A The tree 
shows the rules applied to classify each patient into the related classes (survival or death). At the top of the DT, the overall proportion of the patients 
survived (95%) or died (5%) is shown. Next, the node applies the threshold over clinical data to achieve classification of patients into the two 
classes. For instance, it applies the threshold of 2.7 g/dL over Albumin_24_hours_min (minimum value obtained from the clinical data), the node 
evaluates whether if patients show Albumin_24_hours_min above 2.7. If yes, then the next decision rule in DT is at down to the root’s left child 
node (Yes; depth 2). Ninety‑one percent of patients will survive with a survival probability of ninety‑nine percent. This way, inspecting the whole DT, 
the impact of features on the likelihood of survival can be derived. The percentage of patients at each node is provided below the probability values 
of survival (denoted as 1) or death (denoted as 2) on the DT; the green (survived) /blue (died) shows the fitted/estimated values for the patients 
in each class at given node. ROC curves for B training set and C test set. AUC provides an aggregate measure of performance across all possible 
classification thresholds
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Prediction of the risk of mechanical ventilation and/
or intubation
Machine learning analyses (similar to those described 
above) were performed to identify factors contribut-
ing to the risk of intubation of patients and to triage 
patients during hospitalization. Discrimination of risk 
of intubation was achieved for the three patient classes 
(with risk increasing from class 1 to class 3, with the 
AUC of the ROC curve being above 0.950 for pairwise 
comparison of the classes (Fig. 5A, B). This reflects the 
observation that fused data can be safely and reliably 
used to understand the risk of intubation in patients 
admitted to hospital with SARS-CoV-2 infection. Sev-
eral factors found to be influential in the discrimination 
accuracy of the RF model included the following clini-
cal data: albumin, calcium, temperature, respiration 
rate, ESI index (Emergency Severity Index: a triage tool 

for emergency departments; from clinical data), as well 
as plasma levels of 5-methylcytosine, galacturonate, 
glucuronate, theobromine and citramalate. (Fig. 5C).

A personalized COVID‑19 patient triage software 
application
Using the results obtained from our patient cohorts, a 
COVID Severity by Metabolomic and Clinical Study 
(CSMC) software was developed to support the pre-
hospital process and to classify patients’ condition 
when they arrive to the Emergency Department (Addi-
tional file  1: Figure S4). The software takes advantage 
of the power of machine learning and utilizes the clini-
cal data (that are routinely obtained during hospital 
admission) and the plasma metabolomics data of the 
patient to predict: (i) the discharge disposition of the 
admitted patient (survival prediction), (ii) the length 

Fig. 4 Random Forest (RF) machine learning algorithm to estimate the length of hospitalization of each SARS‑CoV‑2‑infected patient admitted 
to the hospital. A Correlation plot between the RF estimated and the actual duration of hospitalization of SARS‑CoV‑2‑infected patients; distribution 
of error (residuals) for training (B, red square) and test (C, blue square) sets. D The forty most significant factors in the structure of the RF model 
developed to predict the duration of hospitalization of SARS‑CoV‑2‑infected patients (color figure online)



Page 10 of 17Charkoftaki et al. Human Genomics           (2023) 17:80 

of hospitalization, and (iii) the disease prognosis (i.e., 
the risk of the patient for need for mechanical ventila-
tion or intubation). The software supports a population 
health program for COVID-19 management by pre-
dicting care transitions, and patient monitoring during 
viral outbreaks. It can be accessed online here: http:// 
trams. chem. uoa. gr/ csmc/.

Discussion
We performed pathway analysis and statistical analysis 
of the plasma metabolomics data and found them to be 
in agreement with previous publications [11, 22]; trypto-
phan metabolism is a pathway affected by SARS-CoV-2 
infection. The tryptophan metabolic pathway was care-
fully characterized in the present study, and we found 
differences between the SARS-CoV-2 infected and unin-
fected groups, suggesting a disease-associated hyper-
activation of the indoleamine-pyrrole 2,3-dioxygenase 

enzyme [23]. Activation of the kynurenine pathway was 
anticipated because it plays a major role in generation 
of cellular energy (in the form of nicotinamide adenine 
dinucleotide (NAD+)) which is increased substantially 
during an immune response. Higher levels of plasma 
kynurenine are associated with inflammation and psy-
chiatric disorders [24]. This might explain the observed 
neurological disorders associated with the long-term 
effects of COVID-19. We also identified a decrease in 
plasma serotonin levels in SARS-CoV-2-infected patients 
who needed positive airway pressure oxygen and/or 
were intubated. Serotonin is an important autacoid and 
neurotransmitter. Studies have shown that SARS-CoV-
2-infected patients treated with fluvoxamine, a selective 
serotonin reuptake inhibitor, had a lower likelihood of 
clinical deterioration [25, 26] and a very recent paper sug-
gested that serotonin might be the missing link between 
COVID-19 course of severity in patients with diabetes 

Fig. 5 A pairwise comparison of classes by ROC curves in training (A) and test (B) sets; The ROC curves were derived pair‑wise for the four risk 
classes, i.e., SARS‑CoV‑2‑negative subjects (Control) SARS‑CoV‑2‑positive patients who during their hospitalization did not require any external 
oxygen supply or required only a low flow of oxygen (Class 1), SARS‑CoV‑2‑positive patients who required a high flow of oxygen (Class 2), 
and SARS‑CoV‑2‑positive patients who needed positive airway pressure (biphasic; BIPAP or continuous; CPAP) or were intubated (Class 3). C The 
most significant factors in the structure of the Random Forest model developed to predict the risk of intubation due to SARS‑CoV‑2 infection. Note: 
Probability 1 (which is included in the most significant factors in the RF) is the output of the metabolomics results of the PLS‑DA model showing 
the probability of healthy (Control) individuals

http://trams.chem.uoa.gr/csmc/
http://trams.chem.uoa.gr/csmc/
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and obesity [27]. Increased plasma levels in kynurenine, 
kynurenic acid, picolinic acid, and quinolinic acid (but 
not anthranilic acid) occurred in SARS-CoV-2-infected 
patients, suggesting hyperactivation of the kynurenine 
pathway in these subjects, as shown previously [28].

By combining the metabolomics results with the 
patient clinical data obtained during hospitalization, we 
developed an improved machine learning model com-
pared to a model that only used clinical data. Our intent 
was to provide a personalized approach for SARS-CoV-
2-infected patient management. Although some pub-
lished machine learning models are used as screening, 
diagnostic [29] or prediction models of COVID-19 [30, 
31], our model provides a real-time prediction of the 
clinical progression and duration of hospitalization based 
on both routinely-obtained clinical data and the plasma 
metabolomic profile.

Our clinical data findings are in agreement with those 
of Baker and coworkers [32]. Unlike previous assump-
tions [33], there appears to be a vigorous and early 
immune response in the upper airway in patients who 
develop COVID-19, a process that leads to recruitment 
of eosinophils, natural killer cells, and macrophages. In 
Baker’s study, SARS-CoV-2-infected patients not treated 
with budesonide exhibited persistently raised interferon 
and eosinophil chemokines; patients with a worse disease 
prognosis showed a muted early inflammatory response 
(except for raised eosinophil chemokines), followed by a 
severe second peak of inflammation. In our clinical deci-
sion tree model, SARS-CoV-2-infected patients with 
increased eosinophils experienced worse clinical dete-
rioration than those with lower eosinophil counts (< 3.7 
cells/μL), leading to the possibility that blood eosinophil 
levels could serve as a potential biomarker for predicting 
the worsening of COVID-19.

In agreement with other studies [34, 35], we deter-
mined plasma albumin levels to be an important factor 
in predicting whether a SARS-CoV-2-infected patient 
would survive. In addition, it was the clinical parameter 
that exerted the most influence on the discrimination 
accuracy of the Random Forest model assessing the risk 
of intubation. It was also a factor predicting the dura-
tion of hospitalization. Albumin, the most abundant pro-
tein in plasma, performs important metabolic functions 
in the transport of free fatty acids, bilirubin, and many 
drugs [36]. Approximately 15 g of albumin is synthesized 
daily by the liver to maintain the albumin plasma steady 
state concentration [37]. Decreased albumin synthesis 
and increased catabolism after oxidation [38] is observed 
in liver disease and our dataset agrees with recent pub-
lications showing an association of hypoalbuminemia 
with poor outcome in critically ill population including 
COVID-19 [39].

The present study showed that inclusion of plasma 
metabolome data to the model improved the accuracy 
of the prediction of the duration of hospitalization of 
SARS-CoV-2-infected patients. Metabolites shown to 
be important in the model included allantoin, paraxan-
thine and theobromine, and glucuronic acid. Allantoin 
is an excellent biomarker of oxidative stress in humans 
[21, 40], and can be non-enzymatically oxidized from 
uric acid by reactive oxygen species (ROS). However, 
allantoin measurements are not routinely performed 
in clinical laboratories [21]. Many studies have demon-
strated elevated levels of allantoin in a variety of diseases, 
including chronic heart failure [41], gout [42], and cystic 
fibrosis [43]. Methylxanthines, specifically paraxanthine 
and theobromine, which are found in coffee, cacao and 
tea [44], were found to be important in prediction of both 
the hospitalization duration and the severity of the dis-
ease. These metabolites are associated with consump-
tion of cacao or caffeine-containing products, and thus 
can only be obtained through diet. As such, it is likely 
that the decreases in the levels of these metabolites in 
SARS-CoV-2-infected patients relates to decreased con-
sumption of caffeine-containing or cacao-derived prod-
ucts. Interestingly, a recent study has suggested using 
methylxanthines to inhibit SARS-CoV-2 infection [45]. 
In the present study, glucuronic acid, a key metabolite of 
glucose involved in the detoxification of xenobiotic com-
pounds [46], increased with the severity of SARS-CoV-2 
infection symptoms and it contributed to both prediction 
of the hospitalization and the prognosis of the disease. A 
recent metabolomic study of patients with cirrhosis iden-
tified glucuronic acid as a biomarker of disease severity 
and future mortality [47], while another study demon-
strated that glucuronic acid levels were robust predictors 
of all-cause mortality and correlate with future health 
span-related outcomes [20].

In the present study, large-scale plasma metabolomics 
analyses allowed us to identify metabolites, such as 
hydroxytryptophan, kynurenine, picolinic acid, allantoin 
and glucuronic acid, that were increased in SARS-CoV-
2-infected patients. We also identified blood eosinophil 
count as a novel biomarker for COVID-19 disease sever-
ity. Combining all of the available clinical and comorbid-
ity data with the metabolomics data, we demonstrated 
the value of metabolomics data to enhance model predic-
tion. Further, the use of an advanced machine learning 
approach allowed the development a precision medicine 
model that is capable of being used for predicting out-
comes in SARS-CoV-2-infected patients. This approach 
can be utilized for future viral outbreaks to help hospi-
tals triage patients according to their need for emergency 
medical attention.
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Limitations
Our study has some limitations. First, it was conducted 
before vaccines were available and before many of the 
treatments that are available now, such as remdesivir, 
anti-SARS-CoV-2 monoclonal antibodies, and nirmatrel-
vir/ritonavir. One might expect such treatments would 
reduce the changes observed in our metabolite biomark-
ers. Second, the IMPACT study was conducted in a com-
munity setting in New Haven, CT (USA). This resulted 
in our population of healthy controls (i.e., health care 
workers) being mainly White/Caucasian, and despite our 
attempts to recruit ethnic minorities, the SARS-CoV-
2-infected subjects comprised a higher proportion of 
Black/African Americans. As such, the possibility of race/
ethnicity contributing to differences between SARS-CoV-
2-infected and uninfected subjects cannot be excluded. 
These considerations notwithstanding, to our knowledge, 
this is the first study to combine both clinical and metab-
olomics data to build a model to predict hospitalization 
duration and disease severity.

Materials and methods
Chemicals
Ammonium acetate and ammonium hydroxide 25% v/v 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA), and acetonitrile and water (Optima® LC/MS 
grade) were purchased from Fisher Chemical (Fair Lawn, 
NJ, USA). Acetone, BAKER ANALYZED™ ACS Reagent, 
was obtained from J.T.Baker® (VWR International, Penn-
sylvania, USA). For internal labeled standards,  IROA® 
TrueQuant IQQ Kit (IROA Technologies™, Sea Girt, NJ, 
USA) were used.

Study design and participants
The cohort under study included plasma samples col-
lected from SARS-CoV-2-infected patients during their 
hospitalization at the Yale New Haven Hospital (YNHH, 
n = 111) and from healthy (SARS-CoV-2-uninfected) 
Yale New Haven hospital healthcare workers (HCW, 
control) (n = 324) as part of the Yale IMPACT Bioreposi-
tory. All samples were collected between March and May 
2020 and all subjects in the study had not received any 
COVID-19 vaccinations. The healthcare workers were 
medical staff working in the YNHH. This time period 
preceded the availability of immunizations and medi-
cations for COVID-19. We included all patients with 
laboratory-confirmed SARS-CoV-2 infection who were 
hospitalized at the YNHH between March and May 2020. 
The protocol of this study was approved by the Institu-
tional Review Board of Yale University (HIC number 
2000027690). Written informed consent was obtained 
from all study participants. Subject demographic data are 

provided in Table 1. For data analysis, the subjects were 
divided into four groups as follows:

Class n Characteristic

HCW 324 Healthy healthcare workers (control)

1 29 SARS‑CoV‑2‑infected patients who during their hospitaliza‑
tion did not require any external oxygen supply

2 62 SARS‑CoV‑2‑infected patients who required low or high 
flow oxygen supply

3 20 SARS‑CoV‑2‑infected patients who required positive airway 
pressure (biphasic; BIPAP or continuous; CPAP) or were 
intubated

Clinical and comorbidity data
The clinical data (Additional file  1: Table  S1) were 
obtained during the patient hospitalization. They were 
retrieved from electronic medical records, including 
clinical characteristics (comorbidities, Additional file  1: 
Table S2), and laboratory test results assessing lung, kid-
ney, liver, heart function, blood clotting/inflammation 
biomarkers, immune system, respiratory function, and 
metabolic panel. These were measured multiple times 
within the first 24 h of patient admission and we obtained 
a 24 h minimum value (24_hours_min), a 24 h maximum 
value (24_hours_max) and an average of all the measure-
ments withing the 24  h window (24_hours_mean). In 
total, we obtained 65 different clinical parameters and 
had information for 281 different comorbidities accord-
ing to the Emergency Severity Index. In addition, we had 
access to data regarding oxygen supply.

Sample preparation
Untargeted metabolomic profiling was performed on 
plasma samples of SARS-CoV-2-infected and uninfected 
(healthy control) patients. The samples were prepared 
under BSL2 conditions using a protocol approved by the 
Yale Environmental Health and Safety Committee. The 
samples were selected for metabolite extraction in a ran-
domized manner. Four hundred μL methanol:acetone 
(1:1% v/v) was added to 100 μL plasma, vortexed for 20 s 
and left at room temperature for 1  h for viral deactiva-
tion. The samples were then subjected to centrifugation 
(10,000 rpm) for 15 min at 4 °C. Four hundred μL of the 
resultant supernatant was aliquoted into an Eppendorf 
low binding tube (Protein LoBind® Tubes, Eppendorf 
US) and evaporated to dryness in a vacuum concentrator 
(ThermoFisher Scientific, Waltham, MA). Dry extracts 
were reconstituted in 120 μL acetonitrile:water (1:1, 
%v/v) containing 10 μL of IROA Internal Standard U-13C, 
95%  (IROA® TrueQuant IQQ Kit, IROA Technologies™, 
Sea Girt, NJ, USA) and centrifuged (10,000  rpm) for 
10 min at 4°C (to remove insoluble debris). One hundred 
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μL of the supernatant was transferred into liquid chro-
matography-mass spectrometry vials (TrueView LC–MS 
Certified, Waters Corporation, Milford, MA) for LC–MS 
analysis.

Quality Control (QC) samples: Twenty μL of the sam-
ple supernatant was removed before the evaporation 
step. The aliquots were all pooled, and 400 μL aliquots 
were evaporated to dryness, stored and reconstituted as 
described above.

Untargeted metabolomic analysis of plasma samples: 
All extracted samples were analyzed on a quadrupole 
time-of flight (Q-ToF) mass spectrometer (Xevo G2-XS 
Q-ToF, Waters Corporation, Milford, MA) equipped with 
an ultra-performance liquid chromatography (UPLC) 
Acquity I Class (Waters Corporation, Milford, MA) 
unit. Chromatographic separation was performed using 
an Acquity BEH Amide column (particle size, 1.7  μm; 
100  mm (length) × 2.1  mm (i.d.)) (Waters Corporation, 
Milford, MA) equipped with a BEH Amide VanGuard 
pre-column (5 × 2.1  mm, i.d.; 1.7μm) (Waters Corpora-
tion, Milford, MA) was used for chromatographic separa-
tion for Hydrophilic Interaction Liquid Chromatography 
(HILIC)-MS.

The mobile phase for HILIC-MS analysis consisted of 
A (25 mM ammonium hydroxide and 25 mM ammonium 
acetate in water) and B (acetonitrile) delivered at a flow 
rate of 0.5  mL/min. The linear gradient elution started 
at 95% B (0–0.5  min), 95%-65% B (0.5–7  min), 65–40% 
B (7–8  min), 40% B (8–9  min), 40–95% B (9–9.1  min) 
and continuing at 95% B (9.1–12.0  min). The injection 
volume for all samples and standard solutions was 3 μL. 
QC samples were analyzed every ten to fifteen injections. 
The column temperature was set at 30 °C for HILIC, and 
the sample tray temperature was maintained at 8 °C. For 
MS analyses, the electrospray ionization source (ESI) 
was operated in negative mode. Q-ToF–MS scan data 
(300  ms/scan; mass scan range 50–1200  Da) were first 
acquired for each sample. Thereafter,  MSe fragmenta-
tion data were acquired for metabolite identification (low 
energy scan: 200  ms/scan, collision energy 6  eV; high 
energy scan: 100 ms/scan, collision energy 10, 20, 30 and 
40 eV, mass scan range 25–1000 Da). ESI source param-
eters were as follows: 1.8 kV capillary voltage, 40 V sam-
pling cone, 50 °C source temperature, 420 °C desolvation 
temperature, 80 L/hr cone gas flow, 850 L/hr desolvation 
gas flow. Seven batches of randomized samples were run, 
and for each batch, a QC was injected 10 times before the 
individual samples for that sample type were injected to 
ensure matrix stabilization.

Data analysis and structural annotation
ProteoWizard (version 3.06150) was used to convert 
raw MS data files to the  .mzML format [48] and then 

imported in R environment for further analysis. A gen-
eral target screening strategy outlined in our previous 
work [49] and the metabolite identification was per-
formed using our in-house library. The target list was 
used in screening of  MSe data to confirm the metabolites. 
The screening strategy is depicted in Additional file  1: 
Figure S5. The screening was performed using in-house R 
algorithms based on several steps including:

1. Compiling list of our in-house library of metabolites 
with known  MS2 fragments, experimental  tR (min) 
data, molecular formula and chemical identifier;

2. Creating extracted ion chromatogram (EIC) for the 
main adduct (50−) form calculated mass-to-charge 
ratio (m/z) value for the metabolite of interest;

3. Performing peak detection (if the peak is observable) 
and segmentation (to derive retention time range 
where the metabolite elutes) via a trained model 
based on convolutional neural network deep learning 
method (CNN-DL);

4. Checking contamination status for any peak present-
ing probability value > 0.5 (from step 3)) based on 
another CNN-DL based model [49]. Peaks showing a 
probability > 0.5 were considered to be a false positive 
and may exist in the sample due to analytical method 
or contamination (e.g., carry-over/presence in guard 
column, contamination in ion-source or during sam-
ple preparation);

5. Peaks with probability < 0.5 were checked for the 
existence of experimental isotopes (theoretically 
calculated from the molecular formula) and various 
adducts forms meaning that characteristic peaks for 
the given m/z at given mass accuracy (2 mDa) are 
available. This step uses the same algorithm used in 
step 3) to determine if characteristic peaks were pre-
sent and provide a score of match;

6. Peaks showing enough evidence regarding the iso-
topes and adducts (i.e., score above 0.5) were evalu-
ated by available retention time  (tR) data. This step 
compared the  tR information between the  tR value 
in the database and the observed  tR for the sample. 
The threshold used on  tR value to accept the candi-
date was set to 20 s. If the absolute difference in the 
 tR value was above 30 s, the  tR data from the pooled 
sample (labeled TrueQuant metabolites spiked at a 
known concentration in the pooled samples) were 
used instead. Therefore, variation in  tR data due to 
matrix could be minimized, and if the absolute  tR dif-
ference became less than 30 s, the feature was kept; 
otherwise, it was moved to the list of unknowns (to 
be identified by non-target screening);

7. A candidate with acceptable absolute  tR difference 
was evaluated using available MS/MS fragments 
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between initial database and samples. At this stage, 
the minimum number of three MS/MS fragments 
were required to be matched from the target data-
base to the MS/MS data derived from sample using 
a doc product algorithm (threshold > 0.5) [50]. It is 
worth noting that structural isomers would not be 
distinguished using the current workflow unless their 
 tR data exceeded 30 s shifts.

Any detected compound (i.e., whose identification was 
confirmed through the above seven steps) was screened 
in all samples and the peak area values were extracted. 
The  tR range was obtained after using step 2) and the 
peak segmentation algorithm. Eventually, the metabo-
lomics dataset included 559 samples (plus an additional 
117 samples as QC), in which 82 metabolites were identi-
fied. The generated data used for machine learning con-
sisted of the m/z value,  tR, metabolite name and peak 
area.

Machine learning analysis
To discriminate between plasma samples of SARS-CoV-
2-uninfected and infected subjects, the dataset (consist-
ing of metabolite name, m/z,  tR, peak area and metabolite 
name for all samples (N = 559) was imported into the R 
environment and then transformed based on logarith-
mic (base 10) scale. In the metabolomics dataset, missing 
values were treated by predictive mean matching (PMM) 
algorithm using “MICE” R package [51]. The imputation 
of each dataset was performed groupwise (within class), 
i.e., the imputation was performed for metabolites by iso-
lating them based on their group/class. Sixteen samples 
were excluded from the total list of 575 samples due to 
missing values. The complete data was then normalized 
by median value of each metabolite from the pooled sam-
ples (i.e., the QC set) as the estimation of the most proba-
ble quotient. The normalized dataset was then autoscaled 
prior to multivariate analysis. Subsequently, the dataset 
(a total of 559 samples without QC samples) was split 
into training (N = 449) and test set (N = 110) using the 
“DUPLEX” algorithm and “Mahalanobis” as the distance 
function [52, 53]. At first, Principal Component Analy-
sis (PCA) was used to perform data exploratory analy-
sis (using the “factoextra” and “mixOmics” R packages 
[54]). Partial least square discriminant analysis (PLS-DA) 
[54] was used as a supervised method to find markers 
that contribute to differentiation between samples from 
SARS-CoV-2-infected and uninfected patients. The opti-
mal value for latent variables (LVs) used in PLS-DA was 
set by evaluating the misclassification error in 5-leave out 
cross-validation [55]. The statistical significance of the 
PLS-DA model was evaluated using R2X (which meas-
ures the accumulative variance), R2Y (which measures 

the goodness of fit), Q2 (fivefold-cross-validated; predic-
tive ability of the model) and a Receiver Operating Char-
acteristics (ROC) curve. Bayesian theorem was used to 
find threshold at which two classes were discriminated 
by PLS-DA [55]. This was needed to assign classes on 
the samples based on the calculated probability values. 
The threshold of absolute intensity was 0.0456 and was 
derived after evaluating the point at which specificity 
and sensitivity were equal to 1.00. Any probability value 
calculated using the PLS-DA method that lay above this 
0.0456 threshold was class A (i.e., control; SARS-CoV-
2-negative). Class B (i.e., SARS-CoV-2-positive) was 
assigned to a sample if the probability value was below 
0.0456. The weight applied to each metabolite in each 
PLS-DA function was used as a basis to find potential 
markers that would discriminate between the samples. 
Outlier analysis and applicability domain were assessed 
using Hotelling’s  T2 and Q residuals, respectively [55]. 
Any samples showing high Hotelling’s  T2 and Q resid-
ual values were considered to be outliers. PLS-DA and 
related quality assessment factors were implemented in 
R and are available in “http:// trams. chem. uoa. gr/ csmc/”.

The risk of intubation of patients, the length of possible 
hospitalization, and patient discharge status from hos-
pital were modelled using Random Forest (RF) [56]. In 
these analyses, the clinical, comorbidity data and scaled 
data of the metabolites were fused and used collectively. 
Overall, 510 factors (combined Additional file  1: Tables 
S1 and S2) were used in RF structure to model the disease 
severity. To enable rapid determination of COVID-19 
severity, only clinical measurements (min, mean and max 
values of each test) measured for 24 h during their hos-
pital admission were considered. This clinical Decision 
Tree (DT) represents a collection of individual DTs and 
it was trained on the basis of bootstrapped resampling 
(for regression case, such as length of hospitalization) 
and out-of-bag (OOB) misclassification error [56]. The 
risk of intubation was categorized into four groups on 
the basis of mechanical ventilation and/or intubation as 
follows: no risk (SARS-CoV-2-uninfected) (HCW), room 
air (class 1), low and high oxygen flow supplementation 
(class 2), and non-invasive (positive airway pressure, e.g., 
biphasic, BIPAP or continuous, CPAP) or invasive (intu-
bation) oxygen supplementation (class 3). Discharge from 
hospital was a binary classification case: SARS-CoV-
2-infected patients who survived and patients who died. 
The length of hospitalization was subjected to regression 
analysis and the uncertainty was calculated in terms of 
distribution of residuals. In addition, the quality of the 
models based on RF was evaluated internally and exter-
nally using training and independent test sets, and ROC 
curves. RF was implemented on the data using “rpart” 
and “randomForest” R packages. The interpretation of RF 

http://trams.chem.uoa.gr/csmc/
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model was performed using SHAP and is based on game 
theory to explain the output of machine learning model. 
More details about SHAP can be found here [57]. SHAP 
was implemented in python using SHAP python package 
(https:// pypi. org/ proje ct/ shap/).
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The online version contains supplementary material available at https:// doi. 
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