617 research outputs found
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
Evaluating similarity between graphs is of major importance in several
computer vision and pattern recognition problems, where graph representations
are often used to model objects or interactions between elements. The choice of
a distance or similarity metric is, however, not trivial and can be highly
dependent on the application at hand. In this work, we propose a novel metric
learning method to evaluate distance between graphs that leverages the power of
convolutional neural networks, while exploiting concepts from spectral graph
theory to allow these operations on irregular graphs. We demonstrate the
potential of our method in the field of connectomics, where neuronal pathways
or functional connections between brain regions are commonly modelled as
graphs. In this problem, the definition of an appropriate graph similarity
function is critical to unveil patterns of disruptions associated with certain
brain disorders. Experimental results on the ABIDE dataset show that our method
can learn a graph similarity metric tailored for a clinical application,
improving the performance of a simple k-nn classifier by 11.9% compared to a
traditional distance metric.Comment: International Conference on Medical Image Computing and
Computer-Assisted Interventions (MICCAI) 201
Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches
Finding the common structural brain connectivity network for a given
population is an open problem, crucial for current neuro-science. Recent
evidence suggests there's a tightly connected network shared between humans.
Obtaining this network will, among many advantages , allow us to focus
cognitive and clinical analyses on common connections, thus increasing their
statistical power. In turn, knowledge about the common network will facilitate
novel analyses to understand the structure-function relationship in the brain.
In this work, we present a new algorithm for computing the core structural
connectivity network of a subject sample combining graph theory and statistics.
Our algorithm works in accordance with novel evidence on brain topology. We
analyze the problem theoretically and prove its complexity. Using 309 subjects,
we show its advantages when used as a feature selection for connectivity
analysis on populations, outperforming the current approaches
Squeeze-and-Breathe Evolutionary Monte Carlo Optimisation with Local Search Acceleration and its application to parameter fitting
Motivation: Estimating parameters from data is a key stage of the modelling
process, particularly in biological systems where many parameters need to be
estimated from sparse and noisy data sets. Over the years, a variety of
heuristics have been proposed to solve this complex optimisation problem, with
good results in some cases yet with limitations in the biological setting.
Results: In this work, we develop an algorithm for model parameter fitting
that combines ideas from evolutionary algorithms, sequential Monte Carlo and
direct search optimisation. Our method performs well even when the order of
magnitude and/or the range of the parameters is unknown. The method refines
iteratively a sequence of parameter distributions through local optimisation
combined with partial resampling from a historical prior defined over the
support of all previous iterations. We exemplify our method with biological
models using both simulated and real experimental data and estimate the
parameters efficiently even in the absence of a priori knowledge about the
parameters.Comment: 15 Pages, 3 Figures, 6 Tables; Availability: Matlab code available
from the authors upon reques
Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard
In order to ascertain the stomatal and photosynthetic responses of mustard to ethylene under varying N availability, photosynthetic characteristics of mustard grown with optimal (80 mg N kg−1 soil) or low (40 mg N kg−1 soil) N were studied after the application of an ethylene-releasing compound, ethephon (2-chloroethyl phosphonic acid) at 40 days after sowing (DAS). The availability of N influenced ethylene evolution and affected stomatal conductance and photosynthesis. The effect of ethylene was smaller under deficient N where plants contained higher glucose (Glc) sensitivity, despite high ethylene evolution even in the absence of ethephon, potentially because the plants were less sensitive to ethylene per se. Ethephon application at each level of N increased ethylene and decreased Glc sensitivity, which increased photosynthesis via its effect on the photosynthetic machinery and effects on stomatal conductance. Plants grown with sufficient-N and treated with 200 μl l−1 ethephon exhibited optimal ethylene, the greatest stomatal conductance and photosynthesis, and growth. These plants made maximum use of available N and exhibited the highest nitrogen-use efficiency (NUE)
Random walk centrality for temporal networks
Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included
Brain Tumor Segmentation and Tractographic Feature Extraction from Structural MR Images for Overall Survival Prediction
This paper introduces a novel methodology to integrate human brain
connectomics and parcellation for brain tumor segmentation and survival
prediction. For segmentation, we utilize an existing brain parcellation atlas
in the MNI152 1mm space and map this parcellation to each individual subject
data. We use deep neural network architectures together with hard negative
mining to achieve the final voxel level classification. For survival
prediction, we present a new method for combining features from connectomics
data, brain parcellation information, and the brain tumor mask. We leverage the
average connectome information from the Human Connectome Project and map each
subject brain volume onto this common connectome space. From this, we compute
tractographic features that describe potential neural disruptions due to the
brain tumor. These features are then used to predict the overall survival of
the subjects. The main novelty in the proposed methods is the use of normalized
brain parcellation data and tractography data from the human connectome project
for analyzing MR images for segmentation and survival prediction. Experimental
results are reported on the BraTS2018 dataset.Comment: 14 pages, 5 figures, 4 tables, accepted by BrainLes 2018 MICCAI
worksho
Adolescent brain maturation and cortical folding: evidence for reductions in gyrification
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development
Modulation of antioxidant enzyme activities and metabolites ratios by nitric oxide in short-term salt stressed soybean root nodules
Several abiotic factors cause molecular damage to plants either directly or through the accumulation of reactive oxygen species such as hydrogen peroxide (H2O2). We investigated if application of nitric oxide (NO) donor 2,2′- (hydroxynitrosohydrazono) bis-ethanimine (DETA/NO) could reduce the toxic effect resulting from short-term salt stress. Salt treatment (150 mM NaCl) alone and in combination with 10 μM DETA/NO or 10 μM DETA were given to matured soybean root nodules for 24 h. Salt stress resulted in high H2O2 level and lipid peroxidation while application of DETA/NO effectively reduced H2O2 level and prevented lipid peroxidation in the soybean root nodules. NO treatment increased the activities of ascorbate peroxidase and dehydroascorbate reductase under salt stress. Whereas short-term salt stress reduced AsA/DHAsA and GSH/GSSG ratios, application of the NO donor resulted in an increase of the reduced form of the antioxidant metabolites thus increasing the AsA/DHAsA and GSH/GSSG ratios. Our data suggests a protective role of NO against salt stress.Web of Scienc
Anatomical connectivity patterns predict face selectivity in the fusiform gyrus
A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using only structural connectivity, as measured through diffusion-weighted imaging, we were able to predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard group-average benchmark. The structure–function relationship discovered from the initial participants was highly robust in predicting activation in a second group of participants, despite differences in acquisition parameters and stimuli. This approach can thus reliably estimate activation in participants who cannot perform functional imaging tasks and is an alternative to group-activation maps. Additionally, we identified cortical regions whose connectivity was highly influential in predicting face selectivity within the fusiform, suggesting a possible mechanistic architecture underlying face processing in humans.United States. Public Health Service (DA023427)National Institute of Mental Health (U.S.) (F32 MH084488)National Eye Institute (T32 EY013935)Poitras FoundationSimons FoundationEllison Medical Foundatio
- …