Finding the common structural brain connectivity network for a given
population is an open problem, crucial for current neuro-science. Recent
evidence suggests there's a tightly connected network shared between humans.
Obtaining this network will, among many advantages , allow us to focus
cognitive and clinical analyses on common connections, thus increasing their
statistical power. In turn, knowledge about the common network will facilitate
novel analyses to understand the structure-function relationship in the brain.
In this work, we present a new algorithm for computing the core structural
connectivity network of a subject sample combining graph theory and statistics.
Our algorithm works in accordance with novel evidence on brain topology. We
analyze the problem theoretically and prove its complexity. Using 309 subjects,
we show its advantages when used as a feature selection for connectivity
analysis on populations, outperforming the current approaches