12 research outputs found

    An Ultra-Low Power 28 nm FD-SOI Low Noise Amplifier Based on Channel Aware Receiver System Analysis

    No full text
    This study investigates the benefit of an optimal and energy-efficient reconfiguration technique for the design of channel-aware receiver aiming Internet of Things (IoT) applications. First, it demonstrates the interest for adaptive receivers based on an estimation of the received power and compares the proposed channel-aware receiver with the State Of the Art. It is shown that the lifetime of the Wireless Sensor (WS) battery can be extended by a factor of five with the optimization of operating points of the tunable receiver while maintaining similar performances than industrial modules. The design of an Ultra-Low Power (ULP) inductorless Low Noise Amplifier (LNA), which fits the low power mode of the tunable receiver, is then optimized and described. The back-gate biasing of Fully Depleted Silicon-On-Insulator (FD-SOI) technology to lower the power consumption by more than 25% still maintaining performances is evaluated. The proposed LNA has been implemented in ST-Microelectronics 28 nm FD-SOI Technology, its active area is only 0.0015 mm2. The measured performances at 2.4 GHz exhibit more than 16 dB of voltage Gain (Gv), 7.3 dB of Noise Figure (NF), and a −16 dBm Input referred third-order Intercept Point (IIP3). The LNA consumes 300 µW from a 0.6 V supply

    Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping

    No full text
    International audienceWe experimentally demonstrate the mid-infrared extension of supercontinuum in a 1.9-”m suspended core chalcogenide fibre whose zero dispersion wavelength is shifted to 1.9 ”m, i.e., into the transparency window of standard silica fibres. Based on the well-known long-pulse regime of supercontinuum generation in silica fibre, we are able to convert and shift a low-cost optical quasi-CW source at 1.53 ”m into a large number of interacting femtosecond solitons localized up to 2.1 ”m. This optical source called a soliton gas allows us to pump a 50-cm long chalcogenide microstructured fibre near its zero dispersion wavelength, thus leading to an efficient extension of a mid-infrared supercontinuum beyond 2.4 ”m

    HTTP Live Streaming : En studie av strömmande videoprotokoll

    No full text
    AnvÀndningen av strömmande video ökar snabbt just nu. Ett populÀrt konceptÀr adaptive bitrate streaming som gÄr ut pÄ att en video kodas i flera olikabithastigheter. Dessa videor tas sedan och delas upp i smÄ filer och görstillgÀnglig via internet. NÀr du vill spela upp en sÄdan video laddar du först hemen fil som beskriver vart filerna finns och i vilka bithastigheter de Àr kodade i.Mediaspelaren kan dÀr efter börja ladda hem filerna och spela upp dom. Om defysiska förutsÀttningarna, som exempelvis nedladdningshastighet eller CPUbelastning,Àndras under uppspelningen kan mediaspelaren enkelt byta kvalitépÄ videon genom att börja ladda filer av en annan bithastighet och slippa attvideon laggar. Denna rapport tar dÀrför en nÀrmare titt pÄ fyra tekniker inomadaptive bitrate streaming. De som undersöks Àr HTTP Live Streaming,Dynamic Adaptive Streaming over HTTP, HTTP Dynamic Streaming ochSmooth Streaming med avseende pÄ vilka protokoll som dom anvÀnder.Rapporten undersöker Àven hur Apple och FFmpeg har implementerat HTTPLive streaming med avseende pÄ hur mycket data som behövs lÀsas i en filinnan videon kan börja spelas upp. Rapporten visar att det inte Àr sÄ storaskillnader mellan de fyra teknikerna. Dock sticker Dynamic AdaptiveStreaming over HTTP ut lite genom att vara helt oberoende av vilket ljud ellervideoprotokoll som anvÀnds. Rapporten visar ocksÄ pÄ en brist i specificeringenav HTTP Live Streaming dÄ det inte Àr specificerat att första komplettabildrutan i videoströmmen bör ligga i början av filen. I Apples implementationbehövs upp till 30 kB data lÀsas innan uppspelning kan pÄbörjas medan iFFmpegs implementation Àr det ca 600 byte.The use of streaming video is growing rapidly at the moment. A popular conceptis adaptive bitrate streaming, which is when a video gets encoded in severaldifferent bit rates. These videos are then split into small files and made availablevia the internet. When you want to play such a video, you first download afile that describes where the files are located and in what bitrates they are encodedin. The media player then begin downloading the files and play them. Ifthe physical conditions, such as the download speed or CPU load, changes duringplayback, the media player can easily change the quality of the video bystarting to downloading files of a different bit rate and avoid that the video lags.This report will take a closer look at four techniques in adaptive bitrate streaming.They examined techniques are HTTP Live Streaming, Dynamic AdaptiveStreaming over HTTP, HTTP Dynamic Streaming and Smooth Streaming andwhich protocols they use. The report also examines how Apple and FFmpeg hasimplemented HTTP Live Streaming with respect to how much data is needed toread a file before the video can begin to be played. The report shows that thereare no large differences between the four techniques. However, Dynamic AdaptiveStreaming over HTTP stood out a bit by being completely independent ofany audio or video protocols. The report also shows a shortcoming in the specificationof HTTP Live Streaming as it is not specified that the first completeframe of the video stream should be at the beginning of the file. In Apple's implementationits needed to read up to 30 KB of data before playback can bestarted while in FFmpeg's implementation its about 600 bytes
    corecore