21 research outputs found

    Flatfish fishery: impact & challenges

    Get PDF

    Working Group on Electrical Trawling (WGELECTRA; outputs from 2021)

    Get PDF
    The Working Group on Electrical Trawling creates a platform for supra-national joint research projects on electro-trawling and scientific publications. The group also reviews all relevant studies on marine electrofishing and discusses the ongoing and upcoming research projects in the light of knowledge gaps. Research areas covered by the group included fishing tactics and dynamics, organisms and ecological impacts and selectivity of electro trawling. A study into the exploitation of local fishing grounds revealed that pulse trawlers and conventional tickler chain beam trawlers had similar tactics spending 10% of their tows searching for a fishing ground and spending 90% of their tows exploiting a fishing ground. In-situ field campaigns revealed a lower impact of pulse trawls on biogeochemical parameters compared to traditional beam trawl methods. Laboratory experiments found that while alternating or pulsed bipolar currents readily penetrated the sediment, biogeochemical effects appeared to be inhibited from occurring. The combined results concluded that the environmental impact of electricity from pulse trawls is relatively minor compared to the mechanical disturbances created from the same gears. Behavioral response thresholds for pulsed electric fields were determined in laboratory experiments for electroreceptive as well as non-electroreceptive fish species. Comparison of these thresholds to simulations of electric fields around commercial fishing gears suggest that electrical pulses are unlikely to substantially affect the investigated fish species outside the trawl track. A field study into direct mortality among fish and benthic organisms in the wake of pulse trawlers refuted claims that pulse trawling causes mass mortality among non-target species. A study into the selectivity of shrimp pulse trawling vs. traditional trawling concluded that that shrimp fishing using pulse gear does not result in higher amounts of undesired bycatches of small shrimp, fish and benthos when compared to the traditional shrimp beam trawl fisheries. The outline of a PhD project that started in 2021 into organism and ecological impacts of electrofishing for razor clams in Scottish shallow coastal habitats was presented and preliminary results were shared

    Impact of pulsed direct current on embryos, larvae, and young juveniles of Atlantic cod and its implications for electrotrawling of brown shrimp

    Get PDF
    The application of electrical pulses in fishing gear is considered a promising option to increase the sustainability of demersal trawl fisheries. In the electrotrawl fishery for brown shrimp Crangon crangon, an electrical field selectively induces a startle response in the shrimp. Other benthic organisms remain mainly on the seafloor and escape underneath a hovering trawl. Previous experiments have indicated that this pulse has no short-term major harmful effects on adult fish and invertebrates. However, the impact on young marine life stages is still unknown. Because brown shrimp are caught in shallow coastal zones and estuaries, which serve as important nurseries or spawning areas for a wide range of marine species, electrotrawling on these grounds could harm embryos, larvae, and juveniles. We carried out experiments with different developmental stages of Atlantic Cod Gadus morhua, which are considered vulnerable to electrical pulses. Three embryonic stages, four larval stages, and one juvenile stage of Atlantic Cod were exposed to a homogeneous electrical field of 150 V-peak/m for 5 s, mimicking a worst-case scenario. We detected no significant differences in embryo mortality rate between control and exposed groups. However, for the embryonic stage exposed at 18 d postfertilization, the initial hatching rate was lower. Larvae that were exposed at 2 and 26 d posthatch exhibited higher mortality rates than the corresponding nonexposed control groups. In the other larval and juvenile stages, no short-term impact of exposure on survival was observed. Morphometric analysis of larvae and juveniles revealed no differences in measurements or deformations of the yolk, notochord, eye, or head. Although exposure to a worst-case electrical field did not impact survival or development for six of the eight young life stages of Atlantic Cod, the observed delayed hatching rate and decreased survival for larvae might indicate an impact of electric pulses and warrant further research
    corecore