336 research outputs found

    Chiral order and fluctuations in multi-flavour QCD

    Get PDF
    Multi-flavour (N_f>=3) Chiral Perturbation Theory (ChPT) may exhibit instabilities due to vacuum fluctuations of sea q-bar q pairs. Keeping the fluctuations small would require a very precise fine-tuning of the low-energy constants L_4 and L_6 to L_4[crit](M_rho) = - 0.51 * 10^(-3), and L_6[crit](M_rho) = - 0.26 * 10^(-3). A small deviation from these critical values -- like the one suggested by the phenomenology of OZI-rule violation in the scalar channel -- is amplified by huge numerical factors inducing large effects of vacuum fluctuations. This would lead in particular to a strong N_f-dependence of chiral symmetry breaking and a suppression of multi-flavour chiral order parameters. A simple resummation is shown to cure the instability of N_f>=3 ChPT, but it modifies the standard expressions of some O(p^2) and O(p^4) low-energy parameters in terms of observables. On the other hand, for r=m_s/m > 15, the two-flavour condensate is not suppressed, due to the contribution induced by massive vacuum s-bar s pairs. Thanks to the latter, the standard two-flavour ChPT is protected from multi-flavour instabilities and could provide a well-defined expansion scheme in powers of non-strange quark masses.Comment: Published versio

    Analysis and interpretation of new low-energy Pi-Pi scattering data

    Full text link
    The recently published E865 data on charged K_e4 decays and Pi-Pi phases are reanalyzed to extract values of the two S-wave scattering lengths, of the subthreshold parameters alpha and beta, of the low-energy constants l3-bar and l4-bar as well as of the main two-flavour order parameters: and F_pi in the limit m_u = m_d = 0 taken at the physical value of the strange quark mass. Our analysis is exclusively based on direct experimental information on Pi-Pi phases below 800 MeV and on the new solutions of the Roy equations by Ananthanarayan et al. The result is compared with the theoretical prediction relating 2 a_0^0 - 5 a_0^2 and the scalar radius of the pion, which was obtained in two-loop Chiral Perturbation Theory. A discrepancy at the 1-sigma level is found and commented upon.Comment: Published version, to appear in Eur. Phys. J.

    Resumming QCD vacuum fluctuations in three-flavour Chiral Perturbation Theory

    Full text link
    Due to its light mass of order Lambda_QCD, the strange quark can play a special role in Chiral Symmetry Breaking (ChSB): differences in the pattern of ChSB in the limits N_f=2 (m_u,m_d->0, m_s physical) and N_f=3 (m_u,m_d,m_s->0) may arise due to vacuum fluctuations of s-bar s pairs, related to the violation of the Zweig rule in the scalar sector and encoded in particular in the O(p^4) low-energy constants L_4 and L_6. In case of large fluctuations, we show that the customary treatment of SU(3)xSU(3) chiral expansions generate instabilities upsetting their convergence. We develop a systematic program to cure these instabilities by resumming nonperturbatively vacuum fluctuations of s-bar s pairs, in order to extract information about ChSB from experimental observations even in the presence of large fluctuations. We advocate a Bayesian framework for treating the uncertainties due to the higher orders. As an application, we present a three-flavour analysis of the low-energy pi-pi scattering and show that the recent experimental data imply a lower bound on the quark mass ratio 2m_s/(m_u+m_d) > 14 at 95 % confidence level. We outline how additional information may be incorporated to further constrain the pattern of ChSB in the N_f=3 chiral limit.Comment: 58 pages, 8 figure

    MRI/TRUS data fusion for brachytherapy

    Full text link
    BACKGROUND: Prostate brachytherapy consists in placing radioactive seeds for tumour destruction under transrectal ultrasound imaging (TRUS) control. It requires prostate delineation from the images for dose planning. Because ultrasound imaging is patient- and operator-dependent, we have proposed to fuse MRI data to TRUS data to make image processing more reliable. The technical accuracy of this approach has already been evaluated. METHODS: We present work in progress concerning the evaluation of the approach from the dosimetry viewpoint. The objective is to determine what impact this system may have on the treatment of the patient. Dose planning is performed from initial TRUS prostate contours and evaluated on contours modified by data fusion. RESULTS: For the eight patients included, we demonstrate that TRUS prostate volume is most often underestimated and that dose is overestimated in a correlated way. However, dose constraints are still verified for those eight patients. CONCLUSIONS: This confirms our initial hypothesis

    Two-loop representations of low-energy pion form factors and pi-pi scattering phases in the presence of isospin breaking

    Full text link
    Dispersive representations of the pi-pi scattering amplitudes and pion form factors, valid at two-loop accuracy in the low-energy expansion, are constructed in the presence of isospin-breaking effects induced by the difference between the charged and neutral pion masses. Analytical expressions for the corresponding phases of the scalar and vector pion form factors are computed. It is shown that each of these phases consists of the sum of a "universal" part and a form-factor dependent contribution. The first one is entirely determined in terms of the pi-pi scattering amplitudes alone, and reduces to the phase satisfying Watson's theorem in the isospin limit. The second one can be sizeable, although it vanishes in the same limit. The dependence of these isospin corrections with respect to the parameters of the subthreshold expansion of the pi-pi amplitude is studied, and an equivalent representation in terms of the S-wave scattering lengths is also briefly presented and discussed. In addition, partially analytical expressions for the two-loop form factors and pi-pi scattering amplitudes in the presence of isospin breaking are provided.Comment: 57 pages, 12 figure

    Parametrisations of the D -> K l nu form factor and the determination of \hat{g}

    Full text link
    The vector form factor f_+(t) of the semileptonic decay D -> K l nu, measured recently with a high accuracy, can be used to determine the strong coupling constant g_{D_s^* D K}. The latter is related to the normalised coupling \hat{g} releveant in heavy-meson chiral perturbation theory. This determination relies on the estimation of the residue of the form factor at the D_s^* pole and thus on an extrapolation of the form factor in the unphysical region (m_D-m_K)^2<t<(m_D+m_K)^2. We test this extrapolation for several parametrisations of the form factors by determining the value of \hat{g}, whose value can be compared to other (experimental and theoretical) estimates. Several unsophisticated parametrisations, differing by the amount of physical information that they embed, are shown to pass this test. An apparently more elaborated parametrisation of form factors, the so-called z-expansion, is at variance with the other models, and we point out some significant shortcomings of this parametrisation for the problem under consideration.Comment: 16 pages, 2 figures. A few references added. Accepted for publication in JoP

    Pi-eta scattering and the resummation of vacuum fluctuation in three-flavour ChPT

    Full text link
    We discuss various aspects of resummed chiral perturbation theory, which was developed recently in order to consistently include the possibility of large vacuum fluctuations of the ss-pairs and the scenario with smaller value of the chiral condensate for N_f=3. The subtleties of this approach are illustrated using a concrete example of observables connected with pi-eta scattering. This process seems to be a suitable theoretical laboratory for this purpose due to its sensitivity to the values of the O(p^4) LEC's, namely to the values of the fluctuation parameters L4 and L6. We discuss several issues in detail, namely the choice of `good' observables and properties of their bare expansions, the `safe' reparametrization in terms of physical observables, the implementation of exact perturbative unitarity and exact renormalization scale independence, the role of higher order remainders and their estimates. We make a detailed comparison with standard chiral perturbation theory and use generalized ChPT as well as resonance chiral theory to estimate the higher order remainders.Comment: Version submitted to EPJ

    ππ\pi\pi Scattering in Three Flavour ChPT

    Full text link
    We present the scattering lengths for the ππ\pi\pi processes in the three flavour Chiral Perturbation Theory (ChPT) framework at next-to-next-to-leading order. We then combine this calculation with the determination of the parameters from Ke4K_{e4} and the masses and decay constants and compare with the results of a dispersive analysis of ππ\pi\pi scattering. The comparison indicates a small but nonzero value for the 1/Nc1/N_c suppressed NLO low energy constants L4rL_4^r and L6rL_6^r.Comment: 30 page

    Non-Perturbative Study of the Light Pseudoscalar Masses in Chiral Dynamics

    Get PDF
    We perform a non-perturbative chiral study of the masses of the lightest pseudoscalar mesons. In the calculation of the self-energies we employ the S-wave meson-meson amplitudes taken from Unitary Chiral Perturbation Theory (UCHPT) that include the lightest nonet of scalar resonances. Values for the bare masses of pions and kaons are obtained, as well as an estimate of the mass of the \eta_8. The former are found to dominate the physical pseudoscalar masses. We then match to the self-energies from Chiral Perturbation Theory (CHPT) to O(p^4), and a robust relation between several O(p^4) CHPT counterterms is obtained. We also resum higher orders from our calculated self-energies. By taking into account values determined from previous chiral phenomenological studies of m_s/\hat{m} and 3L_7+L^r_8, we determine a tighter region of favoured values for the O(p^4) CHPT counterterms 2L^r_6-L^r_4 and 2L^r_8-L^r_5. This determination perfectly overlaps with the recent determinations to O(p^6) in CHPT. We warn about a likely reduction in the value of m_s/\hat{m} by higher loop diagrams and that this is not systematically accounted for by present lattice extrapolations. We also provide a favoured interval of values for m_s/\hat{m} and 3L_7+L^r_8.Comment: 26 pages, 9 figures. Original new material is included. Major rewriting when comparing with lattice QC
    • …
    corecore