462 research outputs found
Rapid improvement of calciphylaxis after intravenous pamidronate therapy in a patient with chronic renal failure.
A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects.
We define a method for incorporating strong prior shape information into a recently extended Markov point process model for the extraction of arbitrarily-shaped objects from images. To estimate the optimal configuration of objects, the process is sampled using a Markov chain based on a stochastic birth-and-death process defined in a space of multiple objects. The single objects considered are defined by both the image data and the prior information in a way that controls the computational complexity of the estimation problem. The method is tested via experiments on a very high resolution aerial image of a scene composed of tree crowns
Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours.
We extend the marked point process models that have been used for object extraction from images to arbitrarily shaped objects, without greatly increasing the computational complexity of sampling and estimation. The approach can be viewed as an extension of the active contour methodology to an a priori unknown number of objects. Sampling and estimation are based on a stochastic birth-and-death process defined in a space of multiple, arbitrarily shaped objects, where the objects are defined by the image data and prior information. The performance of the approach is demonstrated via experimental results on synthetic and real data
No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model
To identify candidate genes that may be involved in motoneuron degeneration, we combined laser capture microdissection with microarray technology. Gene expression in motoneurons was analyzed during the progression of the disease in transgenic SOD1G93A mice that develop motoneuron loss. Three major observations were made: first, there was only a small number of genes that were differentially expressed in motoneurons at a pre-symptomatic age (27 out of 34 000 transcripts). Secondly, there is an early specific up-regulation of the gene coding for the intermediate filament vimentin that is increased even further during disease progression. Using in situ hybridization and immunohistochemical analysis, we show that vimentin expression was not only elevated in motoneurons but that the protein formed inclusions in the motoneuron cytoplasm. Thirdly, a time-course analysis of the motoneurons at a symptomatic age (90 and 120 days) showed a modest de-regulation of only a few genes associated with cell death pathways; however, a massive up-regulation of genes involved in cell growth and/or maintenance was observed. This is the first description of the gene profile of SOD1G93A motoneurons during disease progression and unexpectedly, no widespread induction of cell death-associated genes was detected in motoneurons of SOD1G93A mic
A Q-Ising model application for linear-time image segmentation
A computational method is presented which efficiently segments digital
grayscale images by directly applying the Q-state Ising (or Potts) model. Since
the Potts model was first proposed in 1952, physicists have studied lattice
models to gain deep insights into magnetism and other disordered systems. For
some time, researchers have realized that digital images may be modeled in much
the same way as these physical systems (i.e., as a square lattice of numerical
values). A major drawback in using Potts model methods for image segmentation
is that, with conventional methods, it processes in exponential time. Advances
have been made via certain approximations to reduce the segmentation process to
power-law time. However, in many applications (such as for sonar imagery),
real-time processing requires much greater efficiency. This article contains a
description of an energy minimization technique that applies four Potts
(Q-Ising) models directly to the image and processes in linear time. The result
is analogous to partitioning the system into regions of four classes of
magnetism. This direct Potts segmentation technique is demonstrated on
photographic, medical, and acoustic images.Comment: 7 pages, 8 figures, revtex, uses subfigure.sty. Central European
Journal of Physics, in press (2010
One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.
Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults.
Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ1-42] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status.
The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ1-42, tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers.
We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers
- …
