47 research outputs found

    Characterization of electrical discharge machining plasmas

    Get PDF
    Electrical Discharge Machining (EDM) is a well-known machining technique since more than fifty years. Its principle is to use the eroding effect on the electrodes of successive electric spark discharges created in a dielectric liquid. EDM is nowadays widely-used in a large number of industrial areas. Nevertheless, few studies have been done on the discharge itself and on the plasma created during this process. Further improvements of EDM, especially for micro-machining, require a better control and understanding of the discharge and of its interaction with the electrodes. In this work, the different phases of the EDM process and the properties of the EDM plasma have been systematically investigated with electrical measurements, with imaging and with time- and spatially-resolved optical emission spectroscopy. The pre-breakdown phase in water is characterized by the generation of numerous small hydrogen bubbles, created by electrolysis. Since streamers propagate more easily in a gaseous medium, these bubbles can facilitate the breakdown process. In oil, no bubbles are observed. Therefore, the breakdown mechanism in oil could be rather enhanced by particles present in the electrode gap. Fast pulses of current and light are simultaneously measured during the pre-breakdown. These pulses are characteristic of the propagation of streamers in the dielectric liquid. The pre-breakdown duration is not constant for given discharge parameters, but distributed following a Weibull distribution. This shows that the breakdown is of stochastic nature. After the breakdown, the plasma develops very rapidly ( 2·1018 cm-3 during the first microsecond). Then it decreases with time, remaining nevertheless above 1016 cm-3 after 50 μs. During the whole discharge, the density is slightly higher in the plasma center. The EDM plasma has such a high density because it is formed from a liquid, and because it is constantly submitted to the pressure imposed by the surrounding liquid. This extreme density produces spectra with strongly-broadened spectral lines, especially the Hα line, and with an important continuum. During the first microsecond when the density is at its maximum, spectral lines are so broadened that they are all merged into a continuum. The low temperature and the high density of the EDM plasma make it weakly non-ideal. Its typical coupling parameter Γ is indeed around 0.3, reaching 0.45 during the first microsecond. In this plasma, the Coulomb interactions between the charged particles are thus of the same order as the mean thermal energy of the particles, which produces coupling phenomena. Spectroscopic results confirm the non-ideality of the EDM plasma. The strong broadening and shift of the Hα line and its asymmetric shape and complex structure, the absence of the Hβ line, and the merging of spectral lines are typical of nonideal plasmas. The EDM plasma has thus extreme physical properties, and the physics involved is astonishingly complex

    High-efficiency Silicon Heterojunction Solar Cells: A Review

    Get PDF
    Silicon heterojunction solar cells consist of thin amorphous silicon layers deposited on crystalline silicon wafers. This design enables energy conversion efficiencies above 20% at the industrial production level. The key feature of this technology is that the metal contacts, which are highly recombination active in traditional, diffused-junction cells, are electronically separated from the absorber by insertion of a wider bandgap layer. This enables the record open-circuit voltages typically associated with heterojunction devices without the need for expensive patterning techniques. This article reviews the salient points of this technology. First, we briefly elucidate device characteristics. This is followed by a discussion of each processing step, device operation, and device stability and industrial upscaling, including the fabrication of solar cells with energy-conversion efficiencies over 21%. Finally, future trends are pointed ou

    Very fast light-induced degradation of a-Si:H/c-Si(100) interfaces

    Get PDF
    Light-induced degradation (LID) of crystalline silicon (c-Si) surfaces passivated with hydrogenated amorphous silicon (a-Si:H) is investigated. The initial passivation decays on polished c-Si(100) surfaces on a time scale much faster than usually associated with bulk a-Si:H LID. This phenomenon is absent for the a-Si:H/c-Si(111) interface. We attribute these differences to the allowed reconstructions on the respective surfaces. This may point to a link between the presence of so-called "fast" states and (internal) surface reconstruction in bulk a-Si:H

    Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering

    Get PDF
    Damage of the hydrogenated amorphous/crystalline silicon interface passivation during transparent conductive oxide sputtering is reported. This occurs in the fabrication process of silicon heterojunction solar cells. We observe that this damage is at least partially caused by luminescence of the sputter plasma. Following low-temperature annealing, the electronic interface properties are recovered. However, the silicon-hydrogen configuration of the amorphous silicon film is permanently changed, as observed from infra-red absorbance spectra. In silicon heterojunction solar cells, although the as-deposited film’s microstructure cannot be restored after sputtering, no significant losses are observed in their open-circuit voltag

    A-Si:H/c-Si heterojunctions: a future mainstream technology for high-efficiency crystalline silicon solar cells ?

    Get PDF
    In this contribution, we shortly review the main features of amorphous/crystalline silicon heterojunction (SHJ) solar cells, including interface defects and requirements for high quality interfaces. We show how a process flow with a limited number of process steps leads to screen printed solar cells of 2x2cm(2) with 21.8% efficiency and of 10x10cm(2) with 20.9% efficiency (n-type FZ). We show that the devices work in high injection conditions of 3x10(15)cm(-3) at the maximum power point, a factor two higher than the base doping. Several research labs and companies can now produce large area 6 '' cells well over 20% on CZ wafers and some of the critical cost factors, such a metallization can be overcome with suitable strategies. Based on the high quality coating tools and processes developed for thin films used for flat panel display or thin film solar cell coatings, the deposition of the layers required to make SHJ cells has the potential to be performed in a controlled way at low cost. Considering the few process steps required, the high quality n-type Cz wafers that can be obtained by proper crystal growth control, SHJ technology has several assets that could make it become a widespread PV technology

    >21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared

    Get PDF
    The properties and high-efficiency potential of frontand rear-emitter silicon heterojunction solar cells on n- and p-type wafers were experimentally investigated. In the low-carrierinjection range, cells on p-type wafers suffer from reduced minority carrier lifetime, mainly due to the asymmetry in interface defect capture cross sections. This leads to slightly lower fill factors than for n-type cells. By using high-quality passivation layers, however, these losses can be minimized. High open-circuit voltages (Voc s) were obtained on both types of float zone (FZ) wafers: up to 735mV on n-type and 726mV on p-type. The best Voc measured on Czochralski (CZ) p-type wafers was only 692mV, whereas it reached 732mV on CZ n-type. The highest aperture-area certified efficiencies obtained on 4 cm2 cells were 22.14% (Voc = 727 mV, FF = 78.4%) and 21.38% (Voc = 722 mV, FF = 77.1%) on n- and p-type FZ wafers, respectively, proving that heterojunction schemes can perform almost as well on high-quality p-type as on n-type wafers. To our knowledge, this is the highest efficiency ever reported for a full silicon heterojunction solar cell on a p-type wafer, and the highest Voc on any p-type crystalline silicon device with reasonable FF

    Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells

    Get PDF
    Silicon heterojunction solar cells have record-high open-circuit voltages but suffer from reduced short-circuit currents due in large part to parasitic absorption in the amorphous silicon, transparent conductive oxide (TCO), and metal layers. We previously identified and quantified visible and ultraviolet parasitic absorption in heterojunctions; here, we extend the analysis to infrared light in heterojunction solar cells with efficiencies exceeding 20%. An extensive experimental investigation of the TCO layers indicates that the rear layer serves as a crucial electrical contact between amorphous silicon and the metal reflector. If very transparent and at least 150 nm thick, the rear TCO layer also maximizes infrared response. An optical model that combines a ray-tracing algorithm and a thin-film simulator reveals why: parallel-polarized light arriving at the rear surface at oblique incidence excites surface plasmons in the metal reflector, and this parasitic absorption in the metal can exceed the absorption in the TCO layer itself. Thick TCO layers-or dielectric layers, in rear-passivated diffused-junction silicon solar cells-reduce the penetration of the evanescent waves to the metal, thereby increasing internal reflectance at the rear surface. With an optimized rear TCO layer, the front TCO dominates the infrared losses in heterojunction solar cells. As its thickness and carrier density are constrained by anti-reflection and lateral conduction requirements, the front TCO can be improved only by increasing its electron mobility. Cell results attest to the power of TCO optimization: With a high-mobility front TCO and a 150-nm-thick, highly transparent rear ITO layer, we recently reported a 4-cm(2) silicon heterojunction solar cell with an active-area short-circuit current density of nearly 39 mA/cm(2) and a certified efficiency of over 22%. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772975

    Back-Contacted Silicon Heterojunction Solar Cells: Optical-Loss Analysis and Mitigation

    Get PDF
    We analyze the optical losses that occur in interdigitated back-contacted amorphous/crystalline silicon heterojunction solar cells. We show that in our devices, the main loss mechanisms are similar to those of two-side contacted heterojunction solar cells. These include reflection and escape-light losses, as well as parasitic absorption in the front passivation layers and rear contact stacks. We then provide practical guidelines to mitigate such reflection and parasitic absorption losses at the front side of our solar cells, aiming at increasing the short-circuit current density in actual devices. Applying these rules, we processed a back-contacted silicon heterojunction solar cell featuring a short-circuit current density of 40.9 mA/cm(2) and a conversion efficiency of 22.0%. Finally, we show that further progress will require addressing the optical losses occurring at the rear electrodes of the back-contacted devices

    Current Losses at the Front of Silicon Heterojunction Solar Cells

    Get PDF
    The current losses due to parasitic absorption in the indium tin oxide (ITO) and amorphous silicon (a-Si:H) layers at the front of silicon heterojunction solar cells are isolated and quantified. Quantum efficiency spectra of cells in which select layers are omitted reveal that the collection efficiency of carriers generated in the ITO and doped a-Si:H layers is zero, and only 30% of light absorbed in the intrinsic a-Si:H layer contributes to the shortcircuit current. Using the optical constants of each layer acquired from ellipsometry as inputs in a model, the quantum efficiency and short-wavelength current loss of a heterojunction cell with arbitrary a-Si:H layer thicknesses and arbitrary ITO doping can be correctly predicted. A 4 cm2 solar cell in which these parameters have been optimized exhibits a short-circuit current density of 38.1 mA/cm2 and an efficiency of 20.8%
    corecore