6 research outputs found

    Deficiency of the Adhesive Protein Complex Lymphocyte Function Antigen 1, Complement Receptor Type 3, Glycoprotein p150,95 in a Girl with Recurrent Bacterial Infections Effects on Phagocytic Cells and Lymphocyte Functions

    Get PDF
    Abstract A patient presenting delayed umbilical cord detachment, severe recurrent bacterial infections, and inability to form pus exhibited a profound defect in the expression of a-and 8-chains of the receptor for the C3bi fragment of C3 (CR3), lymphocyte function antigen I (LFA-1) molecule, and the p150,95 molecule found on neutrophils, monocytes, and lymphocyte membranes. This was shown by immunofluorescence studies using specific monoclonal antibodies, rosette formation with C3bi-coated erythrocytes, and immunoprecipitation for the LFA-1 complex. These membrane defects were responsible for abnormal phagocytic cell functions including adherence to nylon wool, cell movement, phagocytosis, and opsonized particle-induced oxidative response and for defective natural killer cell activity. In addition, lymphocyte function deficiencies previously unobserved in this disease were found. Cytolytic T lymphocyte activity was profoundly reduced; a-and y-interferon production were impaired. Finally, there was no antibody production to vaccinal antigens whereas the antibody responses to polysaccharides and to cytomegalovirus were found to be normal. The cytotoxic T cell deficiency could be expected from previous blocking experiments of this function with monoclonal antibodies to LFA-1 and is probably related to an extremely severe deficiency in LFA-1 expression in this patient. Anomalies in interferon and in antibody production suggest additional role(s) of the LFA-1 complex in monocyte/T lymphocyte/B lymphocyte cell interactions that have not yet been envisaged

    Review on uremic toxins : classification, concentration, and interindividual variability

    Get PDF
    Background. The choice of the correct concentration of potential uremic toxins for in vitro, ex vivo, and in vivo experiments remains a major area of concern; errors at this level might result in incorrect decisions regarding therpeutic correction of uremia and related clinical complications. Methods. An encyclopedic list of uremic retention solutes was composed, containing their mean normal concentration (C-N), their highest mean/median uremic concentration (C-U), their highest concentration ever reported in uremia (C-MAX), and their molecular weight. A literature search of 857 publications on uremic toxicity resulted in the selection of data reported in 55 publications on 90 compounds, published between 1968 and 2002. Results. For all compounds, C-U and/or C-MAX exceeded C-N. Molecular weight was lower than 500 D for 68 compounds; of the remaining 22 middle molecules, 12 exceeded 12,000 D. C-U ranged from 32.0 ng/L (methionine-enkephalin) up to 2.3 g/L (urea). C-U in the ng/L range was found especially for the middle molecules (10/22; 45.5%), compared with 2/68 (2.9%) for a molecular weight <500 D (P < 0.002). Twenty-five solutes (27.8%) were protein bound. Most of them had a molecular weight <500 D except for leptin and retinol-binding protein. The ratio C-U/C-N, an index of the concentration range over which toxicity is exerted, exceeded 15 in the case of 20 compounds. The highest values were registered for several guanidines, protein-bound compounds, and middle molecules, to a large extent compounds with known toxicity. A ratio of C-MAX /C-U <4, pointing to a Gaussian distribution, was found for the majority of the compounds (74/90; 82%). For some compounds, however, this ratio largely exceeded 4 [e.g., for leptin (6.81) or indole-3-acetic acid (10.37)], pointing to other influencing factors than renal function, such as gender, genetic predisposition, proteolytic breakdown, posttranslation modification, general condition, or nutritional status. Conclusion. Concentrations of retention solutes in uremia vary over a broad range, from nanograms per liter to grams per liter. Low concentrations are found especially for the middle molecules. A substantial number of molecules are protein bound and/or middle molecules, and many of these exert toxicity and are characterized by a high range of toxic over normal concentration (C-U/C-N ratio). Hence, uremic retention is a complex problem that concerns many more solutes than the current markers of urea and creatinine alone. This list provides a basis for systematic analytic approaches to map the relative importance of the enlisted families of toxins
    corecore