58 research outputs found

    The OPFOS microscopy family: High-resolution optical-sectioning of biomedical specimens

    Get PDF
    We report on the recently emerging (Laser) Light Sheet based Fluorescence Microscopy field (LSFM). The techniques used in this field allow to study and visualize biomedical objects non-destructively in high-resolution through virtual optical sectioning with sheets of laser light. Fluorescence originating in the cross section of the sheet and sample is recorded orthogonally with a camera. In this paper, the first implementation of LSFM to image biomedical tissue in three dimensions - Orthogonal-Plane Fluorescence Optical Sectioning microscopy (OPFOS) - is discussed. Since then many similar and derived methods have surfaced (SPIM, Ultramicroscopy, HR-OPFOS, mSPIM, DSLM, TSLIM...) which we all briefly discuss. All these optical sectioning methods create images showing histological detail. We illustrate the applicability of LSFM on several specimen types with application in biomedical and life sciences.Comment: 19 pages, 10 figures, to be published in Anatomical Research International (Hindawi

    A prospective, observational study of fidaxomicin use for Clostridioides difficile infection in France.

    Get PDF
    To describe the characteristics, management and outcomes of hospitalised patients with Clostridioides difficile infection (CDI) treated with and without fidaxomicin. This prospective, multicentre, observational study (DAFNE) enrolled hospitalised patients with CDI, including 294 patients treated with fidaxomicin (outcomes recorded over a 3-month period) and 150 patients treated with other CDI therapies during three 1-month periods. The primary endpoint was baseline and CDI characteristics of fidaxomicin-treated patients. At baseline, the fidaxomicin-treated population included immunocompromised patients (39.1%) and patients with severe (59.2%) and recurrent (36.4%) CDI. Fidaxomicin was associated with a high rate of clinical cure (92.2%) and low CDI recurrence (16.3% within 3 months). Clinical cure rates were ≄90% in patients aged ≄65 years, those receiving concomitant antibiotics and those with prior or severe CDI. There were 121/296 (40.9%) patients with adverse events (AEs), 5.4% with fidaxomicin-related AEs and 1.0% with serious fidaxomicin-related AEs. No fidaxomicin-related deaths were reported. Fidaxomicin is an effective and well-tolerated CDI treatment in a real-world setting in France, which included patients at high risk of adverse outcomes.Trial registration: Description of the use of fidaxomicin in hospitalised patients with documented Clostridium difficile infection and the management of these patients (DAFNE), NCT02214771, www.ClinicalTrials.gov

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
    • 

    corecore