75 research outputs found
Editorial: Recent Advances in Voltage-Gated Sodium Channels, their Pharmacology and Related Diseases
No availabl
Grand Challenge for Ion Channels: an Underexploited Resource for Therapeutics
In the last decade, only a few new ion channel drugs have reached the market according to the Food and Drug Administration. These include nateglinide, a non-sulfonylurea blocker of KATP channel used in type II diabetes; ziconotide, a N-type calcium channel blocker against severe chronic pain; pregabalin, a calcium channel a2δ subunit ligand indicated for neuropathic pain; ranolazine, a blocker of late sodium current for chronic angina pectoris; and lubiprostone, a ClC-2 chloride channel activator for chronic idiopathic constipation. In the meantime, the sodium channel blocker mexiletine, indicated as a class II
In vivo evaluation of antimyotonic efficacy of β-adrenergic drugs in a rat model of myotonia
AbstractThe sodium channel blocker mexiletine is considered the first-line drug in myotonic syndromes, a group of muscle disorders characterized by membrane over-excitability. We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, block voltage-gated sodium channels in a manner reminiscent to mexiletine, whereas salbutamol and nadolol do not. We now developed a pharmacological rat model of myotonia congenita to perform in vivo preclinical test of antimyotonic drugs. Myotonia was induced by i.p. injection of 30 mg/kg of anthracene-9-carboxylic acid (9-AC), a muscle chloride channel blocker, and evaluated by measuring the time of righting reflex (TRR). The TRR was prolonged from <0.5 s in control conditions to a maximum of ∼4 s, thirty minutes after 9-AC injection, then gradually recovered in a few hours. Oral administration of mexiletine twenty minutes after 9-AC injection significantly hampered the TRR prolongation, with an half-maximum efficient dose (ED50) of 12 mg/kg. Both propranolol and clenbuterol produced a dose-dependent antimyotonic effect similar to mexiletine, with ED50 values close to 20 mg/kg. Antimyotonic effects of 40 mg/kg mexiletine and propranolol lasted for 2 h. We also demonstrated, using patch-clamp methods, that both propranolol enantiomers exerted a similar block of skeletal muscle hNav1.4 channels expressed in HEK293 cells. The two enantiomers (15 mg/kg) also showed a similar antimyotonic activity in vivo in the myotonic rat. Among the drugs tested, the R(+)-enantiomer of propranolol may merit further investigation in humans, because it exerts antimyotonic effect in the rat model, while lacking of significant activity on the β-adrenergic pathway. This study provides a new and useful in vivo preclinical model of myotonia congenita in order to individuate the most promising antimyotonic drugs to be tested in humans
Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine
We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion, these results confirm our former hypothesis by showing that the presence of hydroxyl groups to the aryloxy moiety of mexiletine greatly reduced sodium channel block, and provide molecular insights into the intimate interaction of local anesthetics with their receptor
Immersive and Non-Immersive Virtual Reality for Pain and Anxiety Management in Pediatric Patients with Hematological or Solid Cancer: A Systematic Review
Invasive and painful procedures, which often induce feelings of anxiety, are necessary components of pediatric cancer treatment, and adequate pain and anxiety management during these treatments is of pivotal importance. In this context, it is widely recognized that a holistic approach, including pharmacological and non-pharmacological modalities, such as distraction techniques, should be the standard of care. Recent evidence suggested the use of virtual reality (VR) as an effective non-pharmacological intervention in pediatrics. Therefore, this systematic review aims to analyze previously published studies on the effectiveness of VR for the management of pain and/or anxiety in children and adolescents with hematological or solid cancer. Medline, SCOPUS, Web of Science, ProQuest, CINAHL, and The Cochrane Central Register of Controlled Trials were used to search for relevant studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Randomized controlled trial, crossover trial, cluster randomized trial, and quasi-experimental studies were included. Thirteen studies, published between 1999 and 2022, that fulfilled the inclusion criteria were included. Regarding the primary outcomes measured, pain was considered in five studies, anxiety in three studies, and the remaining five studies analyzed the effectiveness of VR for both pain and anxiety reduction. Our findings suggested a beneficial effect of VR during painful vascular access procedures. Limited data are available on the reduction of anxiety in children with cancer
A guide to writing systematic reviews of rare disease treatments to generate FAIR-compliant datasets: building a Treatabolome
Abstract: Background: Rare diseases are individually rare but globally affect around 6% of the population, and in over 70% of cases are genetically determined. Their rarity translates into a delayed diagnosis, with 25% of patients waiting 5 to 30 years for one. It is essential to raise awareness of patients and clinicians of existing gene and variant-specific therapeutics at the time of diagnosis to avoid that treatment delays add up to the diagnostic odyssey of rare diseases’ patients and their families. Aims: This paper aims to provide guidance and give detailed instructions on how to write homogeneous systematic reviews of rare diseases’ treatments in a manner that allows the capture of the results in a computer-accessible form. The published results need to comply with the FAIR guiding principles for scientific data management and stewardship to facilitate the extraction of datasets that are easily transposable into machine-actionable information. The ultimate purpose is the creation of a database of rare disease treatments (“Treatabolome”) at gene and variant levels as part of the H2020 research project Solve-RD. Results: Each systematic review follows a written protocol to address one or more rare diseases in which the authors are experts. The bibliographic search strategy requires detailed documentation to allow its replication. Data capture forms should be built to facilitate the filling of a data capture spreadsheet and to record the application of the inclusion and exclusion criteria to each search result. A PRISMA flowchart is required to provide an overview of the processes of search and selection of papers. A separate table condenses the data collected during the Systematic Review, appraised according to their level of evidence. Conclusions: This paper provides a template that includes the instructions for writing FAIR-compliant systematic reviews of rare diseases’ treatments that enables the assembly of a Treatabolome database that complement existing diagnostic and management support tools with treatment awareness data
Effects of Benzothiazolamines on Voltage-Gated Sodium Channels
Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Navchannels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+channel block. Lubeluzole very potently inhibits Navchannels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Navchannel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications
From Riluzole to Dexpramipexole via Substituted-Benzothiazole Derivatives for Amyotrophic Lateral Sclerosis Disease Treatment: Case Studies
International audienceThe 1,3-benzothiazole (BTZ) ring may offer a valid option for scaffold-hopping from indole derivatives. Several BTZs have clinically relevant roles, mainly as CNS medicines and diagnostic agents, with riluzole being one of the most famous examples. Riluzole is currently the only approved drug to treat amyotrophic lateral sclerosis (ALS) but its efficacy is marginal. Several clinical studies have demonstrated only limited improvements in survival, without benefits to motor function in patients with ALS. Despite significant clinical trial efforts to understand the genetic, epigenetic, and molecular pathways linked to ALS pathophysiology, therapeutic translation has remained disappointingly slow, probably due to the complexity and the heterogeneity of this disease. Many other drugs to tackle ALS have been tested for 20 years without any success. Dexpramipexole is a BTZ structural analog of riluzole and was a great hope for the treatment of ALS. In this review, as an interesting case study in the development of a new medicine to treat ALS, we present the strategy of the development of dexpramipexole, which was one of the most promising drugs against ALS
Targeted Therapies for Skeletal Muscle Ion Channelopathies: Systematic Review and Steps Towards Precision Medicine
International audienceBackground: Skeletal muscle ion channelopathies include non-dystrophic myotonias (NDM), periodic paralyses (PP), congenital myasthenic syndrome, and recently identified congenital myopathies. The treatment of these diseases is mainly symptomatic, aimed at reducing muscle excitability in NDM or modifying triggers of attacks in PP. Objective: This systematic review collected the evidences regarding effects of pharmacological treatment on muscle ion channelopathies, focusing on the possible link between treatments and genetic background. Methods: We searched databases for randomized clinical trials (RCT) and other human studies reporting pharmacological treatments. Preclinical studies were considered to gain further information regarding mutation-dependent drug effects. All steps were performed by two independent investigators, while two others critically reviewed the entire process. Results: For NMD, RCT showed therapeutic benefits of mexiletine and lamotrigine, while other human studies suggest some efficacy of various sodium channel blockers and of the carbonic anhydrase inhibitor (CAI) acetazolamide. Preclinical studies suggest that mutations may alter sensitivity of the channel to sodium channel blockers in vitro, which has been translated to humans in some cases. For hyperkalemic and hypokalemic PP, RCT showed efficacy of the CAI dichlorphenamide in preventing paralysis. However, hypokalemic PP patients carrying sodium channel mutations may have fewer benefits from CAI compared to those carrying calcium channel mutations. Few data are available for treatment of congenital myopathies. Conclusions: These studies provided limited information about the response to treatments of individual mutations or groups of mutations. A major effort is needed to perform human studies for designing a mutation-driven precision medicine in muscle ion channelopathies
- …