3 research outputs found

    New measurements of low-energy resonances in the Ne 22 (p,γ) Na 23 reaction

    Get PDF
    The Ne22(p,γ)Na23 reaction is one of the most uncertain reactions in the NeNa cycle and plays a crucial role in the creation of Na23, the only stable Na isotope. Uncertainties in the low-energy rates of this and other reactions in the NeNa cycle lead to ambiguities in the nucleosynthesis predicted from models of thermally pulsing asymptotic giant branch (AGB) stars. This in turn complicates the interpretation of anomalous Na-O trends in globular cluster evolutionary scenarios. Previous studies of the Ne22(p,γ)Na23, Ne22(He3,d)Na23, and C12(C12,p)Na23 reactions disagree on the strengths, spins, and parities of low-energy resonances in Na23 and the direct-capture Ne22(p,γ)Na23 reaction rate contains large uncertainties as well. In this work we present new measurements of resonances at Erc.m.=417, 178, and 151 keV and of the direct-capture process in the Ne22(p,γ)Na23 reaction. The resulting total Ne22(p,γ)Na23 rate is approximately a factor of 20 higher than the rate listed in a recent compilation at temperatures relevant to hot-bottom burning in AGB stars. Although our rate is close to that derived from a recent Ne22(p,γ)Na23 measurement by Cavanna et al. in 2015, we find that this large rate increase results in only a modest 18% increase in the Na23 abundance predicted from a 5 M thermally pulsing AGB star model from Ventura and D'Antona (2005). The estimated astrophysical impact of this rate increase is in marked contrast to the factor of ∼3 increase in Na23 abundance predicted by Cavanna et al. and is attributed to the interplay between the Na23(p,α)Ne20 and Ne20(p,γ)Na21 reactions, both of which remain fairly uncertain at the relevant temperature range

    Development of a variable-energy, high-intensity, pulsed-mode ion source for low-energy nuclear astrophysics studies

    Get PDF
    The primary challenge in directly measuring nuclear reaction rates near stellar energies is their small cross sections. The signal-to-background ratio in these complex experiments can be significantly improved by employing high-current (mA-range) beams and novel detection techniques. Therefore, the electron cyclotron resonance ion source at the Laboratory for Experimental Nuclear Astrophysics underwent a complete upgrade of its acceleration column and microwave system to obtain high-intensity, pulsed proton beams. The new column uses a compression design with O-ring seals for vacuum integrity. Its voltage gradient between electrode sections is produced by the parallel resistance of channels of chilled, deionized water. It also incorporates alternating, transverse magnetic fields for electron suppression and an axially adjustable beam extraction system. Following this upgrade, the operational bremsstrahlung radiation levels and high-voltage stability of the source were vastly improved, over 3.5 mA of target beam current was achieved, and an order-of-magnitude increase in normalized brightness was measured. Beam optics calculations, structural design, and further performance results for this source are presented

    γ-Ray spectroscopy using a binned likelihood approach

    No full text
    The measurement of a reaction cross section from a pulse height spectrum is a ubiquitous problem in experimental nuclear physics. In γ-ray spectroscopy, this is accomplished frequently by measuring the intensity of full-energy primary transition peaks and correcting the intensities for experimental artifacts, such as detection efficiencies and angular correlations. Implicit in this procedure is the assumption that full-energy peaks do not overlap with any secondary peaks, escape peaks, or environmental backgrounds. However, for complex γ-ray cascades, this is often not the case. Furthermore, this technique is difficult to adapt for coincidence spectroscopy, where intensities depend not only on the detection efficiency, but also the detailed decay scheme. We present a method that incorporates the intensities of the entire spectrum (e.g., primary and secondary transition peaks, escape peaks, Compton continua, etc.) into a statistical model, where the transition intensities and branching ratios can be determined using Bayesian statistical inference. This new method provides an elegant solution to the difficulties associated with analyzing coincidence spectra. We describe it in detail and examine its efficacy in the analysis of 18O(p,γ)19F and 25Mg(p,γ)26Al resonance data. For the 18O(p,γ)19F reaction, the measured branching ratios improve upon the literature values, with a factor of 3 reduction in the uncertainties
    corecore