19 research outputs found

    A Self-Emulsified Adjuvant System Containing the Immune Potentiator Alpha Tocopherol Induces Higher Neutralizing Antibody Responses than a Squalene-Only Emulsion When Evaluated with a Recombinant Cytomegalovirus (CMV) Pentamer Antigen in Mice

    No full text
    The development of new vaccine adjuvants represents a key approach to improvingi the immune responses to recombinant vaccine antigens. Emulsion adjuvants, such as AS03 and MF59, in combination with influenza vaccines, have allowed antigen dose sparing, greater breadth of responses and fewer immunizations. It has been demonstrated previously that emulsion adjuvants can be prepared using a simple, low-shear process of self-emulsification (SE). The role of alpha tocopherol as an immune potentiator in emulsion adjuvants is clear from the success of AS03 in pandemic responses, both to influenza and COVID-19. Although it was a significant formulation challenge to include alpha tocopherol in an emulsion prepared by a low-shear process, the resultant self-emulsifying adjuvant system (SE-AS) showed a comparable effect to the established AS03 when used with a quadrivalent influenza vaccine (QIV). In this paper, we first optimized the SE-AS with alpha tocopherol to create SE-AS44, which allowed the emulsion to be sterile-filtered. Then, we compared the in vitro cell activation cytokine profile of SE-AS44 with the self-emulsifying adjuvant 160 (SEA160), a squalene-only adjuvant. In addition, we evaluated SE-AS44 and SEA160 competitively, in combination with a recombinant cytomegalovirus (CMV) pentamer antigen mouse

    Maturation of Aluminium Adsorbed Antigens Contributes to the Creation of Homogeneous Vaccine Formulations

    No full text
    Although aluminium-based vaccines have been used for almost over a century, their mechanism of action remains unclear. It is established that antigen adsorption to the adjuvant facilitates delivery of the antigen to immune cells at the injection site. To further increase our understanding of aluminium-based vaccines, it is important to gain additional insights on the interactions between the aluminium and antigens, including antigen distribution over the adjuvant particles. Immuno-assays can further help in this regard. In this paper, we evaluated how established formulation strategies (i.e., sequential, competitive, and separate antigen addition) applied to four different antigens and aluminium oxyhydroxide, lead to formulation changes over time. Results showed that all formulation samples were stable, and that no significant changes were observed in terms of physical-chemical properties. Antigen distribution across the bulk aluminium population, however, did show a maturation effect, with some initial dependence on the formulation approach and the antigen adsorption strength. Sequential and competitive approaches displayed similar results in terms of the homogeneity of antigen distribution across aluminium particles, while separately adsorbed antigens were initially more highly poly-dispersed. Nevertheless, the formulation sample prepared via separate adsorption also reached homogeneity according to each antigen adsorption strength. This study indicated that antigen distribution across aluminium particles is a dynamic feature that evolves over time, which is initially influenced by the formulation approach and the specific adsorption strength, but ultimately leads to homogeneous formulations

    Mechanism of action of mRNA-based vaccines

    No full text
    Introduction: The present review summarizes the growing body of work defining the mechanisms of action of this exciting new vaccine technology that should allow rational approaches in the design of next generation mRNA vaccines. Areas covered: Bio-distribution of mRNA, localization of antigen production, role of the innate immunity, priming of the adaptive immune response, route of administration and effects of mRNA delivery systems. Expert commentary: In the last few years, the development of RNA vaccines had a fast growth, the rising number of proof will enable rational approaches to improving the effectiveness and safety of this modern class of medicine
    corecore